首页 > 论文 > 中国激光 > 47卷 > 10期(pp:1008001--1)

基于电光调制的DKDP晶体OPCPA增益带宽特性研究

Study on Gain Bandwidth Characteristics of DKDP-OPCPA Based on Electro-Optic Modulation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于电光效应的新型光参量放大方案,理论分析了磷酸二氘钾(DKDP)晶体增益带宽随氘化率的变化特性,研究了70%和95%氘化率的DKDP晶体在不同电场强度下的增益带宽变化特性。在885 nm中心波长处,对70%氘化率的DKDP晶体施加大小为1.67×10 5 V/m的场强时,增益带宽可从90 nm拓宽至124 nm;在808 nm中心波长处,对95%氘化率的DKDP晶体施加大小为1×10 5 V/m的场强时,增益带宽可从52 nm拓宽至68 nm。结果表明,在光学参量放大系统中,通过线性电光效应可以有效拓宽系统的增益带宽,同时可通过电光调制调节增益谱的中心波长,以进行连续波长调谐,在高能超短激光系统中具有很大的应用前景。

Abstract

In this paper, a new optical parametric amplification scheme based on electro-optic effect is proposed. The change characteristics of gain bandwidth of potassium deuterium phosphate (DKDP) crystal are theoretically analyzed with the change of deuteration rate, and the variation characteristics of gain bandwidth of DKDP crystal with 70% and 95% deuteration rate under different electric field intensities are studied. At 885 nm central wavelength, the gain bandwidth of DKDP crystal with 70% deuteration rate can be broadened from 90 nm to 124 nm when the electric field strength of 1.67×10 5 V/m is applied. At 808 nm central wavelength, the gain bandwidth of DKDP crystal with 95% deuteration rate can be broadened from 52 nm to 68 nm when the applied electric field is 1×10 5 V/m. The results show that the linear electro-optic effect can effectively broaden the gain bandwidth of the optical parametric amplification system, and the central wavelength of the gain spectrum can be adjusted by electro-optic modulation to achieve continuous wavelength tuning. It has a great application prospect in high-energy ultrashort laser system.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O437.4

DOI:10.3788/CJL202047.1008001

所属栏目:非线性光学

基金项目:国家自然科学基金、中国科学院国际合作项目、上海市青年科技英才扬帆计划;

收稿日期:2020-04-20

修改稿日期:2020-05-13

网络出版日期:2013-10-01

作者单位    点击查看

孙子茗:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800中国科学院大学, 北京 100049
刘德安:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
韩璐:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800中国科学院大学, 北京 100049
朱健强:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800

联系人作者:刘德安(liudean@siom.ac.cn)

备注:国家自然科学基金、中国科学院国际合作项目、上海市青年科技英才扬帆计划;

【1】Dubietis A, Jonu?auskas G, Piskarskas A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal [J]. Optics Communications. 1992, 88(4/5/6): 437-440.Dubietis A, Jonu?auskas G, Piskarskas A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal [J]. Optics Communications. 1992, 88(4/5/6): 437-440.

【2】Strickland D, Mourou G. Compression of amplified chirped optical pulses [J]. Optics Communications. 1985, 56(3): 219-221.Strickland D, Mourou G. Compression of amplified chirped optical pulses [J]. Optics Communications. 1985, 56(3): 219-221.

【3】Ye R, Yin M, Wu X Y, et al. Theoretical study of spectrum shaping of chirped pulse in OPCPA with angular spectral dispersion [J]. Laser & Optoelectronics Progress. 2018, 55(4): 041901.
叶荣, 阴明, 吴显云, 等. 光谱角色散OPCPA中啁啾脉冲频谱整形的理论研究 [J]. 激光与光电子学进展. 2018, 55(4): 041901.

【4】Cui Z R, Kang J, Xie X L, et al. Compensation for chromatic aberration in femtosecond petawatt laser systems based on zoom image transfer [J]. Chinese Journal of Lasers. 2019, 46(9): 0905001.
崔自若, 康俊, 谢兴龙, 等. 基于变焦像传递的飞秒拍瓦激光系统色差补偿 [J]. 中国激光. 2019, 46(9): 0905001.

【5】Chu Y, Liang X Y, Yu L, et al. Parasitic lasing suppression in large-aperture Ti∶sapphire amplifiers by optimizing the seed-pump time delay [J]. Laser Physics Letters. 2013, 10(5): 055302.Chu Y, Liang X Y, Yu L, et al. Parasitic lasing suppression in large-aperture Ti∶sapphire amplifiers by optimizing the seed-pump time delay [J]. Laser Physics Letters. 2013, 10(5): 055302.

【6】Institute of Applied Physics. Exawatt center for extreme light studies (XCELS)[R] . Russian: The Institute of Applied Physics RAS. 2011.

【7】Mero M, Sipos A, Kurdi G, et al. Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme [J]. Optics Express. 2011, 19(10): 9646-9655.Mero M, Sipos A, Kurdi G, et al. Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme [J]. Optics Express. 2011, 19(10): 9646-9655.

【8】Wnuk P, Stepanenko Y, Radzewicz C. High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier [J]. Optics Express. 2010, 18(8): 7911-7916.

【9】Vaughan P M, Trebino R. Optical-parametric-amplification imaging of complex objects [J]. Optics Express. 2011, 19(9): 8920-8929.

【10】Xu M X, Zhang L S, Liu F F, et al. Effect of deuterium content on the optical properties of DKDP crystals [J]. Crystal Research and Technology. 2018, 53(6): 1700298.Xu M X, Zhang L S, Liu F F, et al. Effect of deuterium content on the optical properties of DKDP crystals [J]. Crystal Research and Technology. 2018, 53(6): 1700298.

【11】Zhang K C, Wang X M. Nonlinear optical crystal material science[M]. Beijing: Science Press, 2005.
张克从, 王希敏. 非线性光学晶体材料科学[M]. 2版. 北京: 科学出版社, 2005.

【12】Li H N, Zhang D C, Zhu J F, et al. Nanosecond mid-infrared tunable parametric laser [J]. Acta Optica Sinica. 2019, 39(11): 1114002.
李浩宁, 张大成, 朱江峰, 等. 纳秒中红外可调谐参量激光研究 [J]. 光学学报. 2019, 39(11): 1114002.

【13】Su G B, Zeng J B, He Y P, et al. Application of large section KDP crystals in the study of laser fusion [J]. Journal of the Chinese Ceramic Society. 1997, 25(6): 93-95.
苏根博, 曾金波, 贺友平, 等. 大截面KDP晶体在激光核聚变研究中的应用 [J]. 硅酸盐学报. 1997, 25(6): 93-95.

【14】Ross I N, Matousek P, Towrie M, et al. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers [J]. Optics Communications. 1997, 144(1/2/3): 125-133.

【15】Lozhkarev V V, Freidman G I, Ginzburg V N, et al. 200 TW 45 fs laser based on optical parametric chirped pulse amplification [J]. Optics Express. 2006, 14(1): 446-454.

【16】Tang Y, Ross I N, Hernandez-Gomez C, et al. Optical parametric chirped-pulse amplification source suitable for seeding high-energy systems [J]. Optics Letters. 2008, 33(20): 2386-2388.

【17】Cui Z J, Liu D A, Miao J, et al. Phase matching using the linear electro-optic effect [J]. Physical Review Letters. 2017, 118(4): 043901.

【18】Boyd R W. Nonlinear optics[M]. New York: , 2008.

【19】Yariv A, Yeh P. Optical electronics in modern communications[M]. New York: , 2007.

【20】Liang X, Kang J, Sun M Z, et al. 808-nm optical parametric amplification based on DKDP crystals [J]. Laser & Optoelectronics Progress. 2016, 53(8): 081901.

【21】Aadhi A, Chaitanya N A, Jabir M V, et al. All-periodically poled, high-power, continuous-wave, single-frequency tunable UV source [J]. Optics Letters. 2015, 40(1): 33-36.

【22】Liu W J, Yin X, Wang S L, et al. Dependence of refractive indices on deuterium content in K(H1-xDx)2PO4 crystals [J]. Optics & Laser Technology. 2012, 44(6): 1769-1772.

引用该论文

Sun Ziming,Liu Dean,Han Lu,Zhu Jianqiang. Study on Gain Bandwidth Characteristics of DKDP-OPCPA Based on Electro-Optic Modulation[J]. Chinese Journal of Lasers, 2020, 47(10): 1008001

孙子茗,刘德安,韩璐,朱健强. 基于电光调制的DKDP晶体OPCPA增益带宽特性研究[J]. 中国激光, 2020, 47(10): 1008001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF