首页 > 论文 > 激光与光电子学进展 > 57卷 > 2期(pp:20001--1)

计算成像技术及应用最新进展 (封面文章) (特邀综述)

Latest Progress in Computational Imaging Technology and Application (Cover Paper) (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

计算成像技术(CIT)是一类有别于传统光学成像“所见即所得”的信息获取和处理方式的新体制成像方式。随着新型光电器件的发展和硬件计算能力的提升,计算成像技术在光电成像领域呈现出蓬勃发展的趋势。计算成像技术通过对光场信息进行采集和计算,达到传统成像无法企及的信息利用率和解译度,满足“更高(分辨率)、更远(探测距离)、更大(光学视场)”的光电成像需求。从成像全链路的信息获取与丢失过程出发,通过透过散射介质成像、偏振成像及仿生成像等几种典型的计算成像方式对光场多物理量信息获取和解译进行分析,详细介绍了计算成像技术的方法原理及实现途径。根据成像技术的发展趋势,前瞻性地提出了计算光学系统设计和超大口径望远镜的设计思想。计算成像技术在提高成像分辨率、扩大探测距离、增大成像视场及减小光学系统体积和功耗等方面具有明显的优势,有望穿透云雾、活体生物组织等实现更远距离、更大深度的成像,应用前景广阔。

Abstract

Computational imaging technology (CIT) refers to a novel imaging method that is different from the “what you see is what you get” information acquisition and processing methods of traditional optical imaging. With the development of new optoelectronic devices and the improvement of hardware computing capabilities, it has shown a booming trend in the field of optoelectronic imaging. By using CIT to obtain and calculate the information of light field, the information utilization and interpretation capability can be superior to traditional imaging, which can realize the requirements of “higher (resolution), farther (detection range), and larger (optical field of view)” of photoelectric imaging. We start from the description of information acquisition and loss process of the imaging chain, and further analyze the acquisition and interpretation of multi-physical information of light field through several typical computational imaging methods, such as scattering imaging, polarization imaging, and bionic imaging, and the principles of them are discussed in detail. According to the trend of imaging technology, we put forward prospectively the design idea of computational optical system based super large-aperture telescopes. Since CIT has significant advantages in improving imaging resolution, increasing detection distance, expanding imaging field of view, and reducing the size and power consumption of optical systems, it is expected to realize the imaging through the fog with longer distance and through biological tissues at a larger depth.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/LOP57.020001

所属栏目:综述

基金项目:国家自然科学基金;

收稿日期:2019-12-04

修改稿日期:2019-12-27

网络出版日期:2020-01-01

作者单位    点击查看

邵晓鹏:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
刘飞:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
李伟:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
杨力铭:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
杨思原:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
刘佳维:西安电子科技大学物理与光电工程学院, 陕西 西安 710071

联系人作者:邵晓鹏(xpshao@xidian.edu.cn)

备注:国家自然科学基金;

【1】Lukac R. Computational photography: methods and applications[M]. Boca Raton: , 2011.

【2】Liu Y Y, Du Y P. Research status and development trend of computational imaging [J]. Electro-Optic Technology Application. 2019, 34(5): 21-24.
刘严严, 杜玉萍. 计算成像的研究现状与发展趋势 [J]. 光电技术应用. 2019, 34(5): 21-24.

【3】Raskar R, Agrawal A, Tumblin J. Coded exposure photography: motion deblurring using fluttered shutter [J]. ACM Transactions on Graphics (TOG). 2006, 25(3): 795-804.

【4】Levin A, Fergus R, Durand F, et al. Image and depth from a conventional camera with a coded aperture [J]. ACM Transactions on Graphics. 2007, 26(3): 70.

【5】Umnov A V, Krylov A S, Nasonov A V. Ringing artifact suppression using sparse representation [M]. ∥Battiato S, Blanc-Talon J, Gallo G, et al. Advanced concepts for intelligent vision systems. Lecture notes in computer science. Cham: Springer. 2015, 9386: 35-45.

【6】Liao Y Z, Xing C Z, He X H. A fast algorithm for single motion image deblurring [J]. Sensors & Transducers. 2014, 171(5): 214-219.

【7】Papoulis A. A new algorithm in spectral analysis and band-limited extrapolation [J]. IEEE Transactions on Circuits and Systems. 1975, 22(9): 735-742.

【8】Barone P, Sebastiani G. A new method of magnetic resonance image reconstruction with short acquisition time and truncation artifact reduction [J]. IEEE Transactions on Medical Imaging. 1992, 11(2): 250-259.

【9】Fuderer M. Ringing artefact reduction by an efficient likelihood improvement method [J]. Proceedings of SPIE. 1989, 1137: 84-91.

【10】Sebastiani G, Barone P. Truncation artifact reduction in magnetic resonance imaging by Markov random field methods [J]. IEEE Transactions on Medical Imaging. 1995, 14(3): 434-441.

【11】Haacke E M, Liang Z P, Izen S H. Superresolution reconstruction through object modeling and parameter estimation [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1989, 37(4): 592-595.

【12】Yan H, Mao J. Data truncation artifact reduction in MR imaging using a multilayer neural network [J]. IEEE Transactions on Medical Imaging. 1993, 12(1): 73-77.

【13】Lerosey G, de Rosny J, Tourin A, et al. Time reversal of electromagnetic waves [J]. Physical Review Letters. 2004, 92(19): 193904.

【14】Chen K, Perelman L T, Zhang Q G, et al. Optical computed tomography in a turbid medium using early arriving photons [J]. Journal of Biomedical Optics. 2000, 5(2): 144-154.

【15】Wang Q Z, Liang X, Wang L, et al. Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium [J]. Optics Letters. 1995, 20(13): 1498-1500.

【16】Schmitt J M, Gandjbakhche A H, Bonner R F. Use of polarized light to discriminate short-path photons in a multiply scattering medium [J]. Applied Optics. 1992, 31(30): 6535-6546.

【17】Shao H R, He Y H, Li W, et al. Polarization-degree imaging contrast in turbid media: a quantitative study [J]. Applied Optics. 2006, 45(18): 4491-4496.

【18】Huang D, Swanson E, Lin C, et al. Optical coherence tomography [J]. Science. 1991, 254(5035): 1178-1181.

【19】Vellekoop I M. Controlling the propagation of light in disordered scattering media [D]. Enschede: University of Twente. 2008.

【20】Xie X S, Zhuang H C, He H X, et al. Extended depth-resolved imaging through a thin scattering medium with PSF manipulation [J]. Scientific Reports. 2018, 8: 4585.

【21】Lerosey G, de Rosny J, Tourin A, et al. Focusing beyond the diffraction limit with far-field time reversal [J]. Science. 2007, 315(5815): 1120-1122.

【22】de Rosny J, Fink M. Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink [J]. Physical Review Letters. 2002, 89(12): 124301.

【23】Shapiro D, Thibault P, Beetz T, et al. Biological imaging by soft X-ray diffraction microscopy [J]. Proceedings of the National Academy of Sciences. 2005, 102(43): 15343-15346.

【24】Miao J W, Ishikawa T, Shen Q, et al. Extending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes [J]. Annual Review of Physical Chemistry. 2008, 59(1): 387-410.

【25】Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media [J]. Optics Letters. 2007, 32(16): 2309-2311.

【26】Vellekoop I M, Aegerter C M. Focusing light through living tissue [J]. Proceedings of SPIE. 2010, 7554: 755430.

【27】Freund I. Looking through walls and around corners [J]. Physica A: Statistical Mechanics and Its Applications. 1990, 168(1): 49-65.

【28】Park J H, Park C, Yu H, et al. Dynamic active wave plate using random nanoparticles [J]. Optics Express. 2012, 20(15): 17010-17016.

【29】Park J H, Park C, Yu H, et al. Active spectral filtering through turbid media [J]. Optics Letters. 2012, 37(15): 3261-3263.

【30】Guan Y F, Katz O, Small E, et al. Polarization control of multiply scattered light through random media by wavefront shaping [J]. Optics Letters. 2012, 37(22): 4663-4665.

【31】Park J, Cho J Y, Park C, et al. Scattering optical elements: stand-alone optical elements exploiting multiple light scattering [J]. ACS Nano. 2016, 10(7): 6871-6876.

【32】Cui M. Parallel wavefront optimization method for focusing light through random scattering media [J]. Optics Letters. 2011, 36(6): 870-872.

【33】Conkey D B, Brown A N. Caravaca-Aguirre A M, et al. Genetic algorithm optimization for focusing through turbid media in noisy environments [J]. Optics Express. 2012, 20(5): 4840-4849.

【34】Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media [J]. Optics Communications. 2008, 281(11): 3071-3080.

【35】Akbulut D. Huisman T J, van Putten E G, et al. Focusing light through random photonic media by binary amplitude modulation [J]. Optics Express. 2011, 19(5): 4017-4029.

【36】Yaqoob Z, Psaltis D, Feld M S, et al. Optical phase conjugation for turbidity suppression in biological samples [J]. Nature Photonics. 2008, 2(2): 110-115.

【37】Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation [J]. Optics Express. 2010, 18(4): 3444-3455.

【38】Popoff S M, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media [J]. Physical Review Letters. 2010, 104(10): 100601.

【39】Popoff S M, Lerosey G, Fink M, et al. Controlling light through optical disordered media: transmission matrix approach [J]. New Journal of Physics. 2011, 13(12): 123021.

【40】Popoff S, Lerosey G, Fink M, et al. Image transmission through an opaque material [J]. Nature Communications. 2010, 1: 81.

【41】Yamaguchi I, Zhang T. Phase-shifting digital holography [J]. Optics Letters. 1997, 22(16): 1268-1270.

【42】Drémeau A, Liutkus A, Martina D, et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques [J]. Optics Express. 2015, 23(9): 11898-11911.

【43】Rajadhyaksha M, Grossman M, Esterowitz D, et al. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast [J]. Journal of Investigative Dermatology. 1995, 104(6): 946-952.

【44】Choi Y, Yang T D, Fang-Yen C, et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium [J]. Physical Review Letters. 2011, 107(2): 023902.

【45】Yu H, Hillman T R, Choi W, et al. Measuring large optical transmission matrices of disordered media [J]. Physical Review Letters. 2013, 111(15): 153902.

【46】Jang H, Yoon C, Chung E, et al. Speckle suppression via sparse representation for wide-field imaging through turbid media [J]. Optics Express. 2014, 22(13): 16619-16628.

【47】Liutkus A, Martina D, Popoff S, et al. Imaging with nature: compressive imaging using a multiply scattering medium [J]. Scientific Reports. 2015, 4: 5552.

【48】Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory. 2006, 52(4): 1289-1306.

【49】Andreoli D, Volpe G, Popoff S, et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix [J]. Scientific Reports. 2015, 5: 10347.

【50】Mounaix M, Andreoli D, Defienne H, et al. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix [J]. Physical Review Letters. 2016, 116(25): 253901.

【51】Mounaix M, Defienne H, Gigan S. Deterministic light focusing in space and time through multiple scattering media with a time-resolved transmission matrix approach [J]. Physical Review A. 2016, 94(4): 041802.

【52】Mounaix M, de Aguiar H B, Gigan S. Temporal recompression through a scattering medium via a broadband transmission matrix [J]. Optica. 2017, 4(10): 1289-1292.

【53】Bifano T. MEMS deformable mirrors [J]. Nature Photonics. 2011, 5(1): 21-23.

【54】Blochet B, Laurent B, Gigan S. Fast wavefront optimization for focusing through biological tissue (Conference Presentation) [J]. Proceedings of SPIE. 2017, 10073: 100730T.

【55】Yu H, Lee K, Park Y. Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes [J]. Optics Express. 2017, 25(7): 8036-8047.

【56】Vellekoop I M, Aegerter C M. Scattered light fluorescence microscopy: imaging through turbid layers [J]. Optics Letters. 2010, 35(8): 1245-1247.

【57】van Putten E G, Akbulut D, Bertolotti J, et al. Scattering lens resolves sub-100 nm structures with visible light [J]. Physical Review Letters. 2011, 106(19): 193905.

【58】He H X, Guan Y F, Zhou J Y. Image restoration through thin turbid layers by correlation with a known object [J]. Optics Express. 2013, 21(10): 12539-12545.

【59】He H X, Wong K S. An improved wavefront determination method based on phase conjugation for imaging through thin scattering medium [J]. Journal of Optics. 2016, 18(8): 085604.

【60】Gong C M, Shao X P, Wu T F, et al. Total variation optimization for imaging through turbid media with transmission matrix [J]. Optical Engineering. 2016, 55(12): 121703.

【61】Mosk A P, Lagendijk A, Lerosey G, et al. Controlling waves in space and time for imaging and focusing in complex media [J]. Nature Photonics. 2012, 6(5): 283-292.

【62】Horstmeyer R, Ruan H W, Yang C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue [J]. Nature Photonics. 2015, 9(9): 563-571.

【63】Rotter S, Gigan S. Light fields in complex media: mesoscopic scattering meets wave control [J]. Reviews of Modern Physics. 2017, 89(1): 015005.

【64】Feng S C, Kane C, Lee P A, et al. Correlations and fluctuations of coherent wave transmission through disordered media [J]. Physical Review Letters. 1988, 61(7): 834-837.

【65】Helmchen F, Denk W. Deep tissue two-photon microscopy [J]. Nature Methods. 2005, 2(12): 932-940.

【66】Freund I, Rosenbluh M, Feng S C. Memory effects in propagation of optical waves through disordered media [J]. Physical Review Letters. 1988, 61(20): 2328-2331.

【67】Bertolotti J, van Putten E G, Blum C, et al. Non-invasive imaging through opaque scattering layers [J]. Nature. 2012, 491(7423): 232-234.

【68】Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations [J]. Nature Photonics. 2014, 8(10): 784-790.

【69】Edrei E, Scarcelli G. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media [J]. Scientific Reports. 2016, 6: 33558.

【70】Zhuang H C, He H X, Xie X S, et al. High speed color imaging through scattering media with a large field of view [J]. Scientific Reports. 2016, 6: 32696.

【71】Sahoo S K, Tang D. -08-15)[2019-12-03] . https:∥arxiv.xilesou. 2017, top/abs/1707: 09577.

【72】Li L, Li Q, Sun S, et al. Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function [J]. Optics Letters. 2018, 43(8): 1670-1673.

【73】Guo C F, Liu J T, Li W, et al. Imaging through scattering layers exceeding memory effect range by exploiting prior information [J]. Optics Communications. 2019, 434: 203-208.

【74】Wang X Y, Jin X, Li J Q, et al. Prior-information-free single-shot scattering imaging beyond the memory effect [J]. Optics Letters. 2019, 44(6): 1423-1426.

【75】Takasaki K T, Fleischer J W. Phase-space measurement for depth-resolved memory-effect imaging [J]. Optics Express. 2014, 22(25): 31426-31433.

【76】Waller L, Situ G H, Fleischer J W. Phase-space measurement and coherence synthesis of optical beams [J]. Nature Photonics. 2012, 6(7): 474-479.

【77】Singh A K, Naik D N, Pedrini G, et al. Exploiting scattering media for exploring 3D objects [J]. Light: Science & Applications. 2017, 6(2): e16219.

【78】Shi Y Y, Liu Y W, Wang J M, et al. Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax [J]. Applied Physics Letters. 2017, 110(23): 231101.

【79】Liao M H, He W Q, Lu D J, et al. Ciphertext-only attack on optical cryptosystem with spatially incoherent illumination: from the view of imaging through scattering medium [J]. Scientific Reports. 2017, 7: 41789.

【80】Li G W, Yang W Q, Li D Y, et al. Cyphertext-only attack on the double random-phase encryption: experimental demonstration [J]. Optics Express. 2017, 25(8): 8690-8697.

【81】Porat A, Andresen E R, Rigneault H, et al. Widefield lensless imaging through a fiber bundle via speckle correlations [J]. Optics Express. 2016, 24(15): 16835-16855.

【82】Stasio N, Conkey D B, Moser C, et al. Light control in a multicore fiber using the memory effect [J]. Optics Express. 2015, 23(23): 30532-30544.

【83】Li H J, Wu T F, Liu J T, et al. Simulation and experimental verification for imaging of gray-scale objects through scattering layers [J]. Applied Optics. 2016, 55(34): 9731-9737.

【84】Qiao M, Liu H L, Pang G H, et al. Non-invasive three-dimension control of light between turbid layers using a surface quasi-point light source for precorrection [J]. Scientific Reports. 2017, 7: 9792.

【85】Wu T F, Katz O, Shao X P, et al. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis [J]. Optics Letters. 2016, 41(21): 5003-5006.

【86】Wu T F, Dong J, Shao X P, et al. Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity [J]. Optics Express. 2017, 25(22): 27182-27194.

【87】Guo C F, Liu J T, Wu T F, et al. Tracking moving targets behind a scattering medium via speckle correlation [J]. Applied Optics. 2018, 57(4): 905-913.

【88】Sinha A, Lee J, Li S, et al. Lensless computational imaging through deep learning [J]. Optica. 2017, 4(9): 1117-1125.

【89】He Y C, Wang G, Dong G X, et al. Ghost imaging based on deep learning [J]. Scientific Reports. 2018, 8: 6469.

【90】Schechner Y Y, Narasimhan S G, Nayar S K. Polarization-based vision through haze [J]. Applied Optics. 2003, 42(3): 511-525.

【91】Schechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization . [C]∥Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, December 8-14, 2001, Kauai, HI, USA. New York: IEEE. 2001, 325-332.

【92】Feng B, Shi Z L, Ai R, et al. A new computational model for performance of airlight rejection utilizing polarization filtering [J]. Acta Optica Sinica. 2011, 31(4): 0401003.
冯斌, 史泽林, 艾锐, 等. 偏振滤波抑制大气背景光的性能计算模型 [J]. 光学学报. 2011, 31(4): 0401003.

【93】Peng W Z. Polarization dehazing algorithm based on atmosphere scattering model [J]. Electronic Measurement Technology. 2011, 34(7): 43-45, 61.
彭文竹. 基于大气散射模型的偏振图像去雾算法 [J]. 电子测量技术. 2011, 34(7): 43-45, 61.

【94】Miyazaki D, Akiyama D, Baba M, et al. Polarization-based dehazing using two reference objects . [C]∥2013 IEEE International Conference on Computer Vision Workshops, December 2-8, 2013, Sydney, Australia. New York: IEEE. 2013, 852-859.

【95】Mudge J, Virgen M. Real time polarimetric dehazing [J]. Applied Optics. 2013, 52(9): 1932-1938.

【96】Panigrahi S, Fade J, Alouini M. Adaptive polarimetric image representation for contrast optimization of a polarized beacon through fog [J]. Journal of Optics. 2015, 17(6): 065703.

【97】Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images [J]. Proceedings of SPIE. 2005, 5888: 588805.

【98】Fang S, Xia X S, Huo X, et al. Image dehazing using polarization effects of objects and airlight [J]. Optics Express. 2014, 22(16): 19523-19537.

【99】Liang J, Ren L Y, Ju H J, et al. Visibility enhancement of hazy images based on a universal polarimetric imaging method [J]. Journal of Applied Physics. 2014, 116(17): 173107.

【100】Shwartz S, Namer E, Schechner Y Y. Blind haze separation . [C]∥2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR''''06), June 17-22, 2006, New York, NY, USA. New York: IEEE. 2006, 6.

【101】Namer E, Shwartz S, Schechner Y Y. Skyless polarimetric calibration and visibility enhancement [J]. Optics Express. 2009, 17(2): 472-493.

【102】Qu Y F, Zou Z F. Non-sky polarization-based dehazing algorithm for non-specular objects using polarization difference and global scene feature [J]. Optics Express. 2017, 25(21): 25004-25022.

【103】Zhang W F, Liang J, Ju H J, et al. A robust haze-removal scheme in polarimetric dehazing imaging based on automatic identification of sky region [J]. Optics & Laser Technology. 2016, 86: 145-151.

【104】Zhao C X, Duan J, Wang X X, et al. Experimental comparison of polarization image restoration of three random angles and two orthogonal angles [J]. Laser & Optoelectronics Progress. 2015, 52(10): 101005.
赵长霞, 段锦, 王欣欣, 等. 3个任意角度与2个正交角度偏振图像复原实验比较 [J]. 激光与光电子学进展. 2015, 52(10): 101005.

【105】Liang J, Ren L Y, Ju H J, et al. Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization [J]. Optics Express. 2015, 23(20): 26146-26157.

【106】Du Y, Guindon B, Cihlar J. Haze detection and removal in high resolution satellite image with wavelet analysis [J]. IEEE Transactions on Geoscience and Remote Sensing. 2002, 40(1): 210-217.

【107】Liu F, Cao L, Shao X P, et al. Polarimetric dehazing utilizing spatial frequency segregation of images [J]. Applied Optics. 2015, 54(27): 8116-8122.

【108】Tan C, Seet G, Sluzek A, et al. Scattering noise estimation of range-gated imaging system in turbid condition [J]. Optics Express. 2010, 18(20): 21147-21154.

【109】Quevedo E, Delory E, Callicó G M, et al. Underwater video enhancement using multi-camera super-resolution [J]. Optics Communications. 2017, 404: 94-102.

【110】Shen J, Wang H, Chen Z, et al. Polarization calculation and underwater target detection inspired by biological visual imaging [J]. Sensors & Transducers. 2014, 169(4): 33-41.

【111】Rowe M P, Tyo J S, Engheta N, et al. Polarization-difference imaging: a biologically inspired technique for observation through scattering media [J]. Optics Letters. 1995, 20(6): 608-610.

【112】Treibitz T, Schechner Y Y. Active polarization descattering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2009, 31(3): 385-399.

【113】Huang B J, Liu T G, Hu H F, et al. Underwater image recovery considering polarization effects of objects [J]. Optics Express. 2016, 24(9): 9826-9838.

【114】Ni X H, Alfano R R. Time-resolved backscattering of circularly and linearly polarized light in a turbid medium [J]. Optics Letters. 2004, 29(23): 2773-2775.

【115】Hu H F, Zhao L, Li X B, et al. Polarimetric image recovery in turbid media employing circularly polarized light [J]. Optics Express. 2018, 26(19): 25047-25059.

【116】Li X B, Hu H F, Zhao L, et al. Polarimetric image recovery method combining histogram stretching for underwater imaging [J]. Scientific Reports. 2018, 8: 12430.

【117】Han P L, Liu F, Yang K, et al. Active underwater descattering and image recovery [J]. Applied Optics. 2017, 56(23): 6631-6638.

【118】Liu F, Han P L, Wei Y, et al. Deeply seeing through highly turbid water by active polarization imaging [J]. Optics Letters. 2018, 43(20): 4903-4906.

【119】Liu F, Wei Y, Han P L, et al. Polarization-based exploration for clear underwater vision in natural illumination [J]. Optics Express. 2019, 27(3): 36293641.

【120】Yeom S, Javidi B, Watson E. Photon counting passive 3D image sensing for automatic target recognition [J]. Optics Express. 2005, 13(23): 9310-9330.

【121】Tavakoli B, Javidi B, Watson E. Three dimensional visualization by photon counting computational integral imaging [J]. Optics Express. 2008, 16(7): 4426-4436.

【122】Schulein R. DaneshPanah M, Javidi B. 3D imaging with axially distributed sensing [J]. Optics Letters. 2009, 34(13): 2012-2014.

【123】Moon I, Javidi B. Three dimensional imaging and recognition using truncated photon counting model and parametric maximum likelihood estimator [J]. Optics Express. 2009, 17(18): 15709-15715.

【124】Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one [J]. Multiscale Modeling & Simulation. 2005, 4(2): 490-530.

【125】Kostadin D, Alessandro F, Vladimir K, et al. Image denoising with block-matching and 3D filtering [J]. Proceedings of SPIE. 2006, 6064: 606414.

【126】Azzari L, Foi A. Variance stabilization for noisy + estimate combination in iterative Poisson denoising [J]. IEEE Signal Processing Letters. 2016, 23(8): 1086-1090.

【127】Figueiredo M T. Bioucas-Dias J M. Restoration of Poissonian images using alternating direction optimization [J]. IEEE Transactions on Image Processing. 2010, 19(12): 3133-3145.

【128】Brady D J, Hagen N. Multiscale lens design [J]. Optics Express. 2009, 17(13): 10659-10674.

【129】Maenner P F. Emerging standards suite for wide-area ISR [J]. Proceedings of SPIE. 2012, 8386: 83860J.

【130】Leininger B, Edwards J, John A, et al. Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS) [J]. Proceedings of SPIE. 2008, 6981: 69810H.

【131】Nicholas M, Octavi F, Wulfken P, et al. The Evryscope: the first full-sky gigapixel-scale telescope [J]. Proceedings of SPIE. 2014, 9145: 91450Z.

【132】Shi L F, Cao A X, Liu Y, et al. Design and experiments of artificial compound eye with large view field [J]. Opto-Electronic Engineering. 2013, 40(7): 27-33.
史立芳, 曹阿秀, 刘艳, 等. 大视场人工复眼结构设计方法与实验 [J]. 光电工程. 2013, 40(7): 27-33.

【133】Marks D L, Son H S, Kim J, et al. Engineering a gigapixel monocentric multiscale camera [J]. Optical Engineering. 2012, 51(8): 083202.

【134】Tremblay E J, Marks D L, Brady D J, et al. Design and scaling of monocentric multiscale imagers [J]. Applied Optics. 2012, 51(20): 4691-4702.

【135】Luneburg R K. Mathematical theory of optics[M]. Berkeley and Los Angeles: , 1964, 189-213.

【136】Rim S B, Catrysse P B, Dinyari R, et al. The optical advantages of curved focal plane arrays [J]. Optics Express. 2008, 16(7): 4965-4971.

【137】Xue L. Design of wide field of view high resolution multi-scale multi-aperture computing imaging system [D]. Harbin: Harbin Institute of Technology. 2018.
薛露. 宽视场高分辨率多尺度多孔径光学计算成像系统设计 [D]. 哈尔滨: 哈尔滨工业大学. 2018.

【138】Lohmann A W. Scaling laws for lens systems [J]. Applied Optics. 1989, 28(23): 4996-4998.

【139】Cossairt O, Nayar S. Spectral focal sweep: extended depth of field from chromatic aberrations . [C]∥2010 IEEE International Conference on Computational Photography (ICCP), March 29-30, 2010, Cambridge, MA, USA. New York: IEEE. 2010, 11553746.

【140】Marks D L, Brady D J. Gigagon: a monocentric lens design imaging 40 gigapixels . [C]∥Imaging Systems, June 7-8, 2010, Tucson, Arizona, United States. Washington, D.C.: OSA. 2010, ITuC2.

【141】Brady D J, Gehm M E, Stack R A, et al. Multiscale gigapixel photography [J]. Nature. 2012, 486(7403): 386-389.

【142】Kittle D S, Daniel L, David J. Automated calibration and optical testing of the AWARE-2 gigapixel multiscale camera [J]. Proceedings of SPIE. 2013, 8660: 866006.

【143】Marks D L, Llull P R, Phillips Z, et al. Characterization of the AWARE 10 two-gigapixel wide-field-of-view visible imager [J]. Applied Optics. 2014, 53(13): C54-C63.

【144】Llull P, Bange L, Phillips Z, et al. Characterization of the AWARE 40 wide-field-of-view visible imager [J]. Optica. 2015, 2(12): 1086-1089.

【145】Liu F, Wei Y Z, Han P L, et al. Design of monocentric wide field-of-view and high-resolution computational imaging system [J]. Acta Physica Sinica. 2019, 68(8): 084201.
刘飞, 魏雅喆, 韩平丽, 等. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计 [J]. 物理学报. 2019, 68(8): 084201.

【146】Shen Y, Wang H, Wang C C, et al. Optical design of a distributed zoom concentric multiscale meteorological instrument [J]. Applied Optics. 2018, 57(18): 5168-5179.

【147】Cossairt O S, Miau D, Nayar S K. Gigapixel computational imaging . [C]∥2011 IEEE International Conference on Computational Photography (ICCP), April 8-10, 2011, Pittsburgh, PA, USA. New York: IEEE. 2011, 11962821.

【148】Son H S, Johnson A, Stack R A, et al. Optomechanical design of multiscale gigapixel digital camera [J]. Applied Optics. 2013, 52(8): 1541-1549.

【149】Cossairt O S, Miau D, Nayar S K. Scaling law for computational imaging using spherical optics [J]. Journal of the Optical Society of America A. 2011, 28(12): 2540-2553.

【150】Nakamura T, Kittle D S, Youn S H, et al. Autofocus for a multiscale gigapixel camera [J]. Applied Optics. 2013, 52(33): 8146-8153.

【151】Llull P, Bange L, Phillips Z, et al. Characterization of the AWARE 40 wide-field-of-view visible imager [J]. Optica. 2015, 2(12): 1086-1089.

【152】Pang W B, Brady D J. Field of view in monocentric multiscale cameras [J]. Applied Optics. 2018, 57(24): 6999-7005.

【153】Chen T. Sphere/plane multi-scale & multi-aperture optical imaging systems [D]. Harbin: Harbin Institute of Technology. 2016.
陈婷. 球面/平面多尺度多孔径光学成像系统研究 [D]. 哈尔滨: 哈尔滨工业大学. 2016.

【154】Chen W W, Liu X S, Liu A Z. A model of shunting inhibitory retinal cellular neural networks and its application [J]. Journal of National University of Defense Technology. 2004, 26(4): 37-41.
陈薇薇, 刘希顺, 刘安芝. 具有分流型抑制机制的视网膜细胞神经网络模型及其应用 [J]. 国防科技大学学报. 2004, 26(4): 37-41.

【155】Liu X L. Visual neurophysiology[M]. Beijing: People''''s Medical Publishing House Co., LTD, 2004.
刘晓玲. 视觉神经生理学[M]. 北京: 人民卫生出版社, 2004.

【156】Marr D. Visual computing theory[M]. Yao G Z: Liu L, Wang Y J, Transl. Beijing: Science Press, 1988.
马尔. 视觉计算理论[M]. 姚国正: 刘磊, 汪云九, 译. 北京: 科学出版社, 1988.

【157】Yin J J, Xiao D Q, Huang S B. Design of CMOS image sensor multi-resolution driver algorithm [J]. Computer Engineering and Design. 2014, 35(9): 3045-3049.
殷建军, 肖德琴, 黄顺彬. CMOS图像传感器多分辨率驱动算法设计 [J]. 计算机工程与设计. 2014, 35(9): 3045-3049.

【158】Jiang Y J. A method to measure the spectral sensitivity of a detector [J]. Optical Instruments. 2000, 22(2): 3-7.
蒋月娟. 探测器光谱灵敏度的一种测量方法 [J]. 光学仪器. 2000, 22(2): 3-7.

【159】Zhang F. The synthesis of fluorescence probes based on quantum dots and their application for bioimaging in vitro and in vivo [D]. Tianjin: Nankai University. 2014.
张菲. 基于量子点的纳米荧光探针的制备及其在细胞和生物活体成像中的应用 [D]. 天津: 南开大学. 2014.

【160】Bao J, Bawendi M G. A colloidal quantum dot spectrometer [J]. Nature. 2015, 523(7558): 67-70.

【161】Dai Q H, Zhang J, Li F F, et al. Dimension reduction of spectral data based on feature mining [J]. Journal of Data Acquisition and Processing. 2016, 31(6): 1097-1105.
戴琼海, 张晶, 李菲菲, 等. 光谱数据的特征挖掘降维方法 [J]. 数据采集与处理. 2016, 31(6): 1097-1105.

【162】Wang Z, Yu Z F. Spectrometer with nanophotonic structure based on compressive sensing (Presentation Recording) [J]. Proceedings of SPIE. 2015, 9555: 95550R.

【163】Ren Y M, Zhang Y N, Li Y. Advances and perspective on compressed sensing and application on image processing [J]. Acta Automatica Sinica. 2014, 40(8): 1563-1575.
任越美, 张艳宁, 李映. 压缩感知及其图像处理应用研究进展与展望 [J]. 自动化学报. 2014, 40(8): 1563-1575.

【164】Zhu Y B, Lei X, Wang K X, et al. Compact CMOS spectral sensor for the visible spectrum [J]. Photonics Research. 2019, 7(9): 961-966.

【165】Chen F, Gao C, Xu P M. Analysis of stray light influence to modulation on Fourier transform spectrometer [J]. Spectroscopy and Spectral Analysis. 2018, 38(9): 2966-2970.
陈芳, 高超, 徐彭梅. 傅里叶变换光谱仪多次反射杂光对调制度的影响分析 [J]. 光谱学与光谱分析. 2018, 38(9): 2966-2970.

【166】Marr D. Vision: a computational investigation into the human representation and processing of visual information [M]. New York: W.H. Freeman and Company. 1982.

【167】Fang Y, Masaki I, Horn B. Depth-based target segmentation for intelligent vehicles: fusion of radar and binocular stereo [J]. IEEE Transactions on Intelligent Transportation Systems. 2002, 3(3): 196-202.

【168】Schmid K, Tomic T, Ruess F, et al. Stereo vision based indoor/outdoor navigation for flying robots . [C]∥2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, November 3-7, 2013, Tokyo, Japan. New York: IEEE. 2013, 3955-3962.

【169】-06-15)[2019-12-03] . https:∥www.subaru.com/engineering/eyesight.html. 2016.

【170】Okada K, Inaba M, Inoue H. Integration of real-time binocular stereo vision and whole body information for dynamic walking navigation of humanoid robot . [C]∥Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI2003, August 1, 2003, Tokyo, Japan. New York: IEEE. 2003, 131-136.

【171】Kajita S, Morisawa M, Miura K, et al. Biped walking stabilization based on linear inverted pendulum tracking . [C]∥2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan. New York: IEEE. 2010, 4489-4496.

【172】Xu Q. Research of 3D face reconstruction based on binocular vision [D]. Fuzhou: Fuzhou University. 2014.
徐强. 基于双目视觉的三维人脸重建方法研究 [D]. 福州: 福州大学. 2014.

【173】Wei Z Z, Li S Q, Zhang G J. 3D reconstruction method of terrain contour features based on stereo vision [J]. Acta Aeronautica et Astronautica Sinica. 2009, 30(6): 1070-1076.
魏振忠, 李苏祺, 张广军. 一种地形轮廓特征的立体视觉三维重建方法 [J]. 航空学报. 2009, 30(6): 1070-1076.

【174】Yue H W. Study on testing system of vehicle braking parameters based on binocular stereo vision [D]. Changchun: Jilin University. 2015.
岳洪伟. 基于双目立体视觉的汽车制动性能检测系统研究 [D]. 长春: 吉林大学. 2015.

【175】Song Y P. Research on three dimensional shape measurement method of mobile phone glass panel based on fringe reflection [D]. Chengdu: University of Electronic Science and Technology of China. 2019.
宋一平. 基于条纹反射的手机玻璃盖板三维面形检测方法研究 [D]. 成都: 电子科技大学. 2019.

【176】Wu Y X. Study on specular surface quality inspection based on optical three dimensional metrology [D]. Chengdu: University of Electronic Science and Technology of China. 2017.
吴雨祥. 基于光学三维成像的镜面物体表面质量检测方法研究 [D]. 成都: 电子科技大学. 2017.

【177】Huang L, Ng C S, Asundi A K. Dynamic three-dimensional sensing for specular surface with monoscopic fringe reflectometry [J]. Optics Express. 2011, 19(13): 12809-12814.

【178】Xie P, Tang M X, Wei X R. Three-dimensional shape measurement of specular surfaces by orthogonal composite fringe reflection [J]. Proceedings of SPIE. 2011, 8200: 820014.

【179】Trumper I, Choi H, Kim D W. Instantaneous phase shifting deflectometry [J]. Optics Express. 2016, 24(24): 27993-28007.

【180】Ma S D, Li B. A phase retrieval algorithm based on color-frequency encoding for fringe reflection technique [J]. Proceedings of SPIE. 2016, 9684: 96840W.

【181】Tao T Y, Chen Q, Feng S J, et al. High-precision real-time 3D shape measurement based on a quad-camera system [J]. Journal of Optics. 2018, 20(1): 014009.

【182】Zuo C, Tao T Y, Feng S J, et al. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10, 000 frames per second [J]. Optics and Lasers in Engineering. 2018, 102: 70-91.

【183】Hyun J S, Zhang S. Enhanced two-frequency phase-shifting method [J]. Applied Optics. 2016, 55(16): 4395-4401.

【184】Liu Z P, Zibley P C, Zhang S. Motion-induced error compensation for phase shifting profilometry [J]. Optics Express. 2018, 26(10): 12632-12637.

【185】Lu L, Ding Y, Luan Y S, et al. Automated approach for the surface profile measurement of moving objects based on PSP [J]. Optics Express. 2017, 25(25): 32120-32131.

【186】Feng S J, Chen Q, Zuo C, et al. Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns [J]. Optics Express. 2017, 25(2): 540-559.

【187】Gao P, Yao B L, Lindlein N, et al. Phase-shift extraction for generalized phase-shifting interferometry [J]. Optics Letters. 2009, 34(22): 3553-3555.

【188】Feng S, Zuo C, Tao T, et al. Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry [J]. Optics and Lasers in Engineering. 2018, 103: 127-138.

【189】Wei L B. Multiresulution range image reconstruction and its software implementation [D]. Tianjin: Tianjin University. 2006.
韦林彬. 多分辨深度图像重建算法与软件实现 [D]. 天津: 天津大学. 2006.

【190】Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry [J]. Journal of the Optical Society of America. 1982, 72(1): 156-160.

【191】Ghiglia D C, Pritt M D. Two-dimensional phase unwrapping: theory, algorithms, and software [M]. New York: John Wiley and Sons, Inc. 1998.

【192】Srinivasan V, Liu H C, Halioua M. Automated phase-measuring profilometry of 3-D diffuse objects [J]. Applied Optics. 1984, 23(18): 3105-3108.

【193】Su H J, Li J L, Su X Y. Phase algorithm without the influence of carrier frequency [J]. Optical Engineering. 1997, 36(6): 1799-1805.

【194】Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: two-dimensional phase unwrapping [J]. Radio Science. 1988, 23(4): 713-720.

【195】Su X Y, Chen W J. Fourier transform profilometry: a review [J]. Optics and Lasers in Engineering. 2001, 35(5): 263-284.

【196】Zhang Y. Optimal solution for train wheel 3D measurement on abrupt surface based on Fourier transform profilometry [D]. Chengdu: Southwest Jiaotong University. 2017.
张渝. 基于FTP的车轮表面陡变部位三维形貌测量适应性研究 [D]. 成都: 西南交通大学. 2017.

【197】Su X Y. Zarubin A M, von Bally G. Modulation analysis of phase-shifted holographic interferograms [J]. Optics Communications. 1994, 105(5/6): 379-387.

【198】Su X Y, Zhang Q C. Dynamic 3-D shape measurement method: a review [J]. Optics and Lasers in Engineering. 2010, 48(2): 191-204.

【199】Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques [J]. Optics and Lasers in Engineering. 2010, 48(2): 149-158.

【200】van der Jeught S, Dirckx J J J. Real-time structured light profilometry: a review [J]. Optics and Lasers in Engineering. 2016, 87: 18-31.

【201】Zhang Q C. -10-16)[2019-12-03] . https:∥spie.org/news/5138-a-new-approach-to-recording-the-motion-of-flapping-wings?SSO=1. 2013.

【202】Zeng C, Gao H Y, Liu J C, et al. Latest developments of dynamic holographic three-dimensional display [J]. Acta Physica Sinica. 2015, 64(12): 124215.
曾超, 高洪跃, 刘吉成, 等. 动态全息三维显示研究最新进展 [J]. 物理学报. 2015, 64(12): 124215.

【203】Leith E N, Upatnieks J. Reconstructed wavefronts and communication theory [J]. Journal of the Optical Society of America. 1962, 52(10): 1123-1130.

【204】Kogelnik H. Coupled wave theory for thick hologram gratings [J]. Bell System Technical Journal. 1969, 48(9): 2909-2947.

【205】Benton S A. Hologram reconstruction with extended incoherent sources [J]. Journal of the Optical Society of America. 1969, 59(11): 1545-1546.

【206】St-Hilaire P, Benton S A, Lucente M E, et al. Electronic display system for computational holography [J]. Proceedings of SPIE. 1990, 1212: 174-182.

【207】Matoba O, Naughton T J, Frauel Y, et al. Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram [J]. Applied Optics. 2002, 41(29): 6187-6192.

【208】Bouamama L, Bouafia M, Wernicke G, et al. Real time opto-digital holographic microscopy (RTODHM) [J]. Catalysis Today. 2004, 89(3): 337-341.

【209】Chen H Y, Wang H. Real-time reconstruction of holograms using spatial light modulator [J]. Opto-Electronic Engineering. 2008, 35(3): 122-125.
陈海云, 王辉. 用空间光调制器实现全息再现像的实时重构 [J]. 光电工程. 2008, 35(3): 122-125.

【210】Kinashi K, Wang Y, Tsujimura S, et al. Dynamic holographic images using photorefractive composites . [C]∥Biomedical Optics and 3-D Imaging, April 28-May 2, 2012, Miami, Florida, United States. Washington, D.C.: OSA. 2012, JM3A: 58.

【211】Xia X X, Liu X, Li H F, et al. A 360-degree floating 3D display based on light field regeneration [J]. Optics Express. 2013, 21(9): 11237-11247.

【212】Sasaki H, Yamamoto K, Ichihashi Y, et al. Image size scalable full-parallax coloured three-dimensional video by electronic holography [J]. Scientific Reports. 2015, 4: 4000.

【213】Matsushima K, Sonobe N. Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects [J]. Applied Optics. 2018, 57(1): A150-A156.

【214】Kozacki T, Chlipala M, Makowski P L. Color Fourier orthoscopic holography with laser capture and an LED display [J]. Optics Express. 2018, 26(9): 12144-12158.

【215】He Z H, Sui X M, Zhao Y, et al. The development trend of virtual reality and augmented reality technology based on holographic optics [J]. Science & Technology Review. 2018, 36(9): 8-17.
何泽浩, 隋晓萌, 赵燕, 等. 基于全息光学的虚拟现实与增强现实技术进展 [J]. 科技导报. 2018, 36(9): 8-17.

【216】Koshikawa K. A polarimetric approach to shape understanding of glossy objects . [C]∥Proceedings of the 6th international joint conference on Artificial intelligence, August 20-23, 1979, Tokyo, Japan. San Francisco: Morgan Kaufmann Publishers Inc. 1979, 1: 493-495.

【217】Wolff L B, Boult T E. Constraining object features using a polarization reflectance model [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1991, 13(7): 635-657.

【218】Wolff L B. Surface orientation from polarization images [J]. Proceedings of SPIE. 1988, 850: 110-121.

【219】Wolff L B. Radiometry [M]. Burlington: Jones and Bartlett Publishers. 1944, 193-199.

【220】Saito M, Sato Y, Ikeuchi K, et al. Measurement of surface orientations of transparent objects using polarization in highlight . [C]∥Proceedings of 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), June 23-25, 1999, Fort Collins, CO, USA. New York: IEEE. 1999, 381-386.

【221】Rahmann S, Canterakis N. Reconstruction of specular surfaces using polarization imaging . [C]∥Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, December 8-14, 2001, Kauai, HI, USA. New York: IEEE. 2001, 149-155.

【222】Gurton K P, Yuffa A J, Videen G W. Enhanced facial recognition for thermal imagery using polarimetric imaging [J]. Optics Letters. 2014, 39(13): 3857-3859.

【223】Yuffa A J, Gurton K P, Videen G. Three-dimensional facial recognition using passive long-wavelength infrared polarimetric imaging [J]. Applied Optics. 2014, 53(36): 8514-8521.

【224】Ba Y H, Chen R, Wang Y Q, et al. -03-25)[2019-12-03] . https:∥arxiv.xilesou. 2019, top/abs/1903: 10210.

【225】Taamazyan V, Kadambi A. -06-11)[2019-12-03] . https:∥arxiv.xilesou. 2016, top/abs/1605: 02066.

【226】Miyazaki D, Kagesawa M, Ikeuchi K. Determining shapes of transparent objects from two polarization images . [C]∥MVA, December 11-13, 2002, Nara-ken New Public Hall, Nara, Japan. [S.l.: s.n.]. 2002, 26-31.

【227】Miyazaki D, Tan R T, Hara K, et al. Polarization-based inverse rendering from a single view . [C]∥Proceedings Ninth IEEE International Conference on Computer Vision, October 13-16, 2003, Nice, France. New York: IEEE. 2003, 7971016.

【228】Miyazaki D, Shigetomi T, Baba M, et al. Surface normal estimation of black specular objects from multiview polarization images [J]. Optical Engineering. 2017, 56(4): 041303.

【229】Atkinson G A, Hancock E R. Recovery of surface orientation from diffuse polarization [J]. IEEE Transactions on Image Processing. 2006, 15(6): 1653-1664.

【230】Stolz C, Ferraton M, Meriaudeau F. Shape from polarization: a method for solving zenithal angle ambiguity [J]. Optics Letters. 2012, 37(20): 4218-4220.

【231】Morel O, Meriaudeau F, Stolz C, et al. Polarization imaging applied to 3D reconstruction of specular metallic surfaces [J]. Proceedings of SPIE. 2005, 5679: 178-186.

【232】Morel O, Stolz C, Meriaudeau F, et al. Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging [J]. Applied Optics. 2006, 45(17): 4062-4068.

【233】Atkinson G A, Hancock E R. Surface reconstruction using polarization and photometric stereo [M]. ∥Kropatsch W G, Kampel M, Hanbury A. Computer analysis of images and patterns. Lecture notes in computer science. Berlin, Heidelberg: Springer. 2007, 4673: 466-473.

【234】Cui Z P, Gu J W, Shi B X, et al. Polarimetric multi-view stereo . [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE. 2017, 369-378.

【235】Raskar R. Less is more: coded computational photography [M]. ∥Yagi Y, Kang S B, Kweon I S, et al. Computer vision-ACCV 2007. Lecture notes in computer science. Berlin, Heidelberg: Springer. 2007, 4843: 1-12.

【236】Sherif S S, Cathey W T, Dowski E R. Phase plate to extend the depth of field of incoherent hybrid imaging systems [J]. Applied Optics. 2004, 43(13): 2709-2721.

【237】Kubala K, Dowski E, Cathey W. Reducing complexity in computational imaging systems [J]. Optics Express. 2003, 11(18): 2102-2108.

【238】Sherif S S, Dowski E R, Cathey W T. Extended depth of field in hybrid imaging systems: circular aperture [J]. Journal of Modern Optics. 2004, 51(8): 1191-1209.

【239】Somayaji M, Christensen M P. Enhancing form factor and light collection of multiplex imaging systems by using a cubic phase mask [J]. Applied Optics. 2006, 45(13): 2911-2923.

【240】Somayaji M, Christensen M P. Frequency analysis of the wavefront-coding odd-symmetric quadratic phase mask [J]. Applied Optics. 2007, 46(2): 216-226.

【241】Ramkumar N, Alan E, Vladislav C, et al. Applications of wavefront coded imaging [J]. Proceedings of SPIE. 2004, 5299: 163-174.

【242】Kubala K S, Edward D, James K, et al. Design and optimization of aberration and error invariant space telescope systems [J]. Proceedings of SPIE. 2004, 5524: 54-65.

【243】Mezouari S, Gonzalo M, Andrew R. Amplitude and phase filters for mitigation of defocus and third-order aberrations [J]. Proceedings of SPIE. 2003, 5249: 238-248.

【244】Mezouari S, Harvey A R. Combined amplitude and phase filters for increased tolerance to spherical aberration [J]. Journal of Modern Optics. 2003, 50(14): 2213-2220.

【245】Muyo G, Harvey A R. Wavefront coding for athermalization of infrared imaging systems [J]. Proceedings of SPIE. 2004, 5612: 227-235.

【246】Demenikov M, Findlay E, Harvey A R. Miniaturization of zoom lenses with a single moving element [J]. Optics Express. 2009, 17(8): 6118-6127.

【247】Stork D G, Robinson M D. Information-based methods for optics/image processing co-design [C]. AIP Conference Proceedings. 2006, 860(15): 125-135.

【248】Robinson D, Stork D G. Joint design of lens systems and digital image processing . [C]∥International Optical Design, June 4-8, 2006, Vancouver, Canada. Washington, D.C.: OSA. 2006, WB4.

【249】Robinson M D, Stork D G. End-to-end compensation of digital-optical imaging systems [J]. Proceedings of SPIE. 2006, 6288: 628809.

【250】Robinson M D, Stork D G. Joint digital-optical design of multi-frame imaging systems . [C]∥Computational Optical Sensing and Imaging, June 18-20, 2007, Vancouver, Canada. Washington, D.C.: OSA. 2007, CMB2.

【251】Robinson M D, Stork D G. Joint digital-optical design of superresolution multiframe imaging systems [J]. Applied Optics. 2008, 47(10): B11-B20.

【252】Mirani T, Rajan D, Christensen M P, et al. Computational imaging systems: joint design and end-to-end optimality [J]. Applied Optics. 2008, 47(10): B86-B103.

【253】Schuler C J, Hirsch M, Harmeling S, et al. Non-stationary correction of optical aberrations . [C]∥2011 International Conference on Computer Vision, November 6-13, 2011, Barcelona, Spain. New York: IEEE. 2011, 659-666.

【254】Heide F, Rouf M, Hullin M B, et al. High-quality computational imaging through simple lenses [J]. ACM Transactions on Graphics. 2013, 32(5): 149.

【255】Tan Z, Fang Y, Zhang J G, et al. -04-01 . 2015.
谭政, 方煜, 张金刚, 等. -04-01 [P]. . 一种反射式数字成像系统的设计方法: 201410814461.2. 2015.

【256】Zhang J G, Xiangli B, Tan Z, et al. -01-27 . 2016.
张金刚, 相里斌, 谭政, 等. -01-27 [P]. . 一种透射式数字成像系统的设计方法: 201410812249.2. 2016.

【257】Xiangli B, Zhang J G, Tan Z, et al. -04-29 [P]. digital joint design method for a digital imaging system: 201510030481.5. 2015.
相里斌, 张金刚, 谭政, 等. -04-29 [P]. . 一种数字成像系统的光学和数字联合设计方法: 201510030481.5. 2015.

【258】Li W L. A computational photography algorithm for quality enhancement of single lens imaging deblurring [D]. Changsha: National University of Defense Technology. 2014.
李卫丽. 单透镜高质量计算成像技术研究 [D]. 长沙: 国防科学技术大学. 2014.

【259】Li W L, Liu Y, Yin X Q, et al. A computational photography algorithm for quality enhancement of single lens imaging deblurring [J]. Optik. 2015, 126(21): 2788-2792.

【260】Hao J K. Imaging though simple lens based on computational photography [D]. Changchun: University of Chinese Academy of Sciences. 2015.
郝建坤. 基于计算光学的简单透镜成像技术 [D]. 长春: 中国科学院大学. 2015.

【261】Hao J K, Huang W, Liu J, et al. Review of non-blind deconvolution image restoration based on spatially-varying PSF [J]. Chinese Optics. 2016, 9(1): 41-50.
郝建坤, 黄玮, 刘军, 等. 空间变化PSF非盲去卷积图像复原法综述 [J]. 中国光学. 2016, 9(1): 41-50.

【262】Feng H J, Tao X P, Zhao J F, et al. Review and prospect of image restoration with space-variant point spread function [J]. Opto-Electronic Engineering. 2009, 36(1): 1-7.
冯华君, 陶小平, 赵巨峰, 等. 空间变化PSF图像复原技术的研究现状与展望 [J]. 光电工程. 2009, 36(1): 1-7.

【263】Bai Y. Research on digital correction technology in optical joint design [D]. Zhengzhou: Zhengzhou University. 2016.
白杨. 光学联合设计中的数字校正技术研究 [D]. 郑州: 郑州大学. 2016.

【264】Tan Z, Xiangli B, Lü Q B, et al. Optics/digital processing co-design method based on aberration optional-correcting [J]. Acta Photonica Sinica. 2018, 47(5): 0511001.
谭政, 相里斌, 吕群波, 等. 基于像差选择性校正的光学-数字联合设计 [J]. 光子学报. 2018, 47(5): 0511001.

引用该论文

Shao Xiaopeng,Liu Fei,Li Wei,Yang Liming,Yang Siyuan,Liu Jiawei. Latest Progress in Computational Imaging Technology and Application[J]. Laser & Optoelectronics Progress, 2020, 57(2): 020001

邵晓鹏,刘飞,李伟,杨力铭,杨思原,刘佳维. 计算成像技术及应用最新进展[J]. 激光与光电子学进展, 2020, 57(2): 020001

被引情况

【1】刘彦丽,赵海博,于晓杰,王业超,钟晓明,薛芳,徐婧,张丽莎. 双通道快照式计算光谱偏振成像方法研究. 激光与光电子学进展, 2020, 57(14): 143601--1

【2】郭澄,耿勇,翟玉兰,左琴,温秀,刘正君. 变参数计算成像技术研究进展. 激光与光电子学进展, 2020, 57(16): 160001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF