首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1006008--1)

新型双沟槽抗弯曲大模场扇形瓣状光纤研究

Novel Bend-Resistant Large-Mode-Area Fan-Segmented Cladding Fiber with Double Trenches

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种新型的抗弯曲大模场面积光纤方案——双沟槽辅助型扇形瓣状光纤。与传统的扇形瓣状光纤及单沟槽辅助扇形瓣状光纤相比,该结构具有更大的模场面积和更好的高阶模抑制能力。研究结果表明:在弯曲半径为20 cm,波长为1.55 μm时,光纤的有效模场面积可达1096 μm 2,高阶模与基模损耗比大于100;此外,所提出的光纤对弯曲方向不敏感,弯曲方向在[-180°,180°]范围内变化时,光纤性能保持稳定。

Abstract

A novel double-trench-assisted fan-segmented cladding fiber (SCF) is proposed and researched. Compared with traditional fan-SCF and single-trench-assisted fan-SCF, the proposed fiber structure has a larger mode area and better high-order mode (HOM) suppression. Numerical investigations show that, when the bending radius is 20 cm, the effective mode area of the fundamental mode (FM) reaches up to 1096 μm 2 and the loss ratio between HOM and the FM is greater than 100 at a wavelength of 1.55 μm. In addition, the proposed fiber structure is insensitive to the bending orientation and its properties remain stable with a bending orientation ranging from -180° to 180°.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248.1

DOI:10.3788/AOS201939.1006008

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金;

收稿日期:2019-04-11

修改稿日期:2019-07-05

网络出版日期:2019-10-01

作者单位    点击查看

王冠利:北京交通大学电子信息工程学院全光网络与现代通信网教育部重点实验室, 北京 100044
宁提纲:北京交通大学电子信息工程学院全光网络与现代通信网教育部重点实验室, 北京 100044
郑晶晶:北京交通大学电子信息工程学院全光网络与现代通信网教育部重点实验室, 北京 100044
李晶:北京交通大学电子信息工程学院全光网络与现代通信网教育部重点实验室, 北京 100044
许建:北京交通大学电子信息工程学院全光网络与现代通信网教育部重点实验室, 北京 100044
魏淮:北京交通大学电子信息工程学院全光网络与现代通信网教育部重点实验室, 北京 100044
裴丽:北京交通大学电子信息工程学院全光网络与现代通信网教育部重点实验室, 北京 100044
马绍朔:北京交通大学电子信息工程学院全光网络与现代通信网教育部重点实验室, 北京 100044

联系人作者:裴丽(lipei@bjtu.edu.cn)

备注:国家自然科学基金;

【1】Zeng H F and Xiao F H. The development of Yb-doped double-clad fiber laser and its application [J]. Laser Technology. 2006, 30(4): 438-441, 444.
曾惠芳, 肖芳惠. 高功率光纤激光器及其应用 [J]. 激光技术. 2006, 30(4): 438-441, 444.

【2】Zhang J, Pan Y Z, Hu G J et al. Application and forecast of high power fiber lasers [J]. Semiconductor Optoelectronics. 2003, 24(4): 222-226.
张军, 潘玉寨, 胡贵军 等. 高功率光纤激光器的应用与展望 [J]. 半导体光电. 2003, 24(4): 222-226.

【3】Jeong Y, Sahu J K, Payne D N et al. Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power [J]. Electronics Letters. 2004, 40(8): 470.

【4】Stutzki F, Gaida C, Gebhardt M et al. Tm-based fiber-laser system with more than 200 MW peak power [J]. Optics Letters. 2015, 40(1): 9-12.

【5】Sun Y H, Ke W W, Feng Y J et al. 1030 nm kilowatt-level ytterbium-doped narrow linewidth fiber amplifier [J]. Chinese Journal of Lasers. 2016, 43(6): 0601003.
孙殷宏, 柯伟伟, 冯昱骏 等. 1030 nm千瓦级掺镱光纤窄线宽激光放大器 [J]. 中国激光. 2016, 43(6): 0601003.

【6】Moulton P F, Rines G A, Slobodtchikov E V et al. Tm-doped fiber lasers: fundamentals and power scaling [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2009, 15(1): 85-92.

【7】Smith A V and Smith J J. Mode instability in high power fiber amplifiers [J]. Optics Express. 2011, 19(11): 10180-10192.

【8】Richardson D J, Nilsson J and Clarkson W A. High power fiber lasers: current status and future perspectives [Invited] [J]. Journal of the Optical Society of America B. 2010, 27(11): B63-B92.

【9】Xu W B, Lin Z Q, Wang M et al. 50 μm core diameter Yb 3+/Al 3+/F - codoped silica fiber with M2<1.1 beam quality [J]. Optics Letters. 2016, 41(3): 504-507.

【10】Saini T S, Kumar A et al. . Rectangular-core large-mode-area photonic crystal fiber for high power applications: design and analysis [J]. Applied Optics. 2016, 55(15): 4095-4100.

【11】Saini T S, Kumar A and Sinha R K. Triangular-core large-mode-area photonic crystal fiber with low bending loss for high power applications [J]. Applied Optics. 2014, 53(31): 7246-7251.

【12】Wang L F, Liu H, He D B et al. Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power [J]. Applied Physics Letters. 2014, 104(13): 131111.

【13】Baskiotis C, Molin D, Bouwmans G et al. Bending behaviors of all-solid silica large mode area Bragg fibers [J]. Proceedings of SPIE. 2009, 7195: 719520.

【14】Horikis T P and Kath W L. Modal analysis of circular Bragg fibers with arbitrary index profiles [J]. Optics Letters. 2006, 31(23): 3417-3419.

【15】Jain D, Baskiotis C and Sahu J K. Mode area scaling with multi-trench rod-type fibers [J]. Optics Express. 2013, 21(2): 1448-1455.

【16】Jain D, Baskiotis C and Sahu J K. Bending performance of large mode area multi-trench fibers [J]. Optics Express. 2013, 21(22): 26663-26670.

【17】Yang F, Tang M, Li B R et al. Design and optimization of multi-core fibers with low crosstalk and large effective area [J]. Acta Optica Sinica. 2014, 34(1): 0106005.
杨芳, 唐明, 李博睿 等. 低串扰大模场面积多芯光纤的设计与优化 [J]. 光学学报. 2014, 34(1): 0106005.

【18】Rastogi V and Chiang K S. Propagation characteristics of a segmented cladding fiber [J]. Optics Letters. 2001, 26(8): 491-493.

【19】Rastogi V and Chiang K. Leakage losses in segmented cladding fibers . [C]//OFC 2003 Optical Fiber Communications Conference, 2003., March 28, 2003, Atlanta, GA, USA. New York: IEEE. 2003, 697-699.

【20】Hooda B, Pal A, Rastogi V et al. Segmented cladding fiber fabricated in silica-based glass [J]. Optical Engineering. 2015, 54(7): 075103.

【21】Ma S S, Ning T G, Li J et al. Detailed study of bending effects in large mode area segmented cladding fibers [J]. Applied Optics. 2016, 55(35): 9954-9960.

【22】Liu S N, Ning T G, Ma S S et al. Trench-assisted fan-segmented cladding fiber with large mode area [J]. Chinese Journal of Lasers. 2018, 45(12): 1206001.
刘诗男, 宁提纲, 马绍朔 等. 一种大模场沟槽辅助型扇形瓣状光纤的研究 [J]. 中国激光. 2018, 45(12): 1206001.

【23】Ma S S, Ning T G, Pei L et al. Design and analysis of a modified segmented cladding fiber with parabolic-profile core [J]. Laser Physics Letters. 2018, 15(3): 035104.

引用该论文

Wang Guanli,Ning Tigang,Zheng Jingjing,Li Jing,Xu Jian,Wei Huai,Pei Li,Ma Shaoshuo. Novel Bend-Resistant Large-Mode-Area Fan-Segmented Cladding Fiber with Double Trenches[J]. Acta Optica Sinica, 2019, 39(10): 1006008

王冠利,宁提纲,郑晶晶,李晶,许建,魏淮,裴丽,马绍朔. 新型双沟槽抗弯曲大模场扇形瓣状光纤研究[J]. 光学学报, 2019, 39(10): 1006008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF