Photonics Research, 2021, 9 (1): 01000049, Published Online: Apr. 1, 2021  

Second-order interference of true thermal light from a warm atomic ensemble in two independent unbalanced interferometers Download: 696次Editors' Pick

Author Affiliations
Department of Physics, Pusan National University, Geumjeong-Gu, Busan 46241, Republic of Korea
Abstract
We report the demonstration of a second-order interference experiment by use of thermal light emitted from a warm atomic ensemble in two spatially separated unbalanced Michelson interferometers (UMIs). This novel multipath correlation interference with thermal light has been theoretically proposed by Tamma [New J. Phys.18, 032002 (2016)NJOPFM1367-263010.1088/1367-2630/18/3/032002]. In our experiment, the bright thermal light used for second-order interference is superradiantly emitted via collective two-photon coherence in Doppler-broadened cascade-type Rb87 atoms. Owing to the long coherence time of the thermal light from the atomic ensemble, we observe its second-order interference in the two independent UMIs by means of time-resolved coincidence detection. The temporal waveforms of the interfering thermal light in the two spatially separated UMIs exhibit similarities with the temporal two-photon waveform of time–energy entangled photon pairs in Franson interferometry. Our results can contribute toward a better understanding of the relation between first- and second-order interferences that are at the heart of photonics-based quantum information science.

Jiho Park, Heonoh Kim, Han Seb Moon. Second-order interference of true thermal light from a warm atomic ensemble in two independent unbalanced interferometers[J]. Photonics Research, 2021, 9(1): 01000049.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!