首页 > 论文 > 激光与光电子学进展 > 56卷 > 23期(pp:231202--1)

基于平面光栅尺的掩模台位置误差分析与验证

Analysis and Verification of Position Error of Reticle Stage Based on Planar Grating

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为实现掩模台水平向三自由度高精度的运动定位,掩模台测量系统需要建立准确的多自由度解耦测量模型。采用二维衍射平面光栅尺建立掩模台自由度位置测量系统,并主要分析平面光栅尺和读头产生的多个安装误差使测量掩模台位置存在偏差的原因。首先结合安装布局设计出三自由度位移模型,然后结合平面光栅尺和读头的安装误差,分析掩模台位置产生阿贝误差与余弦误差的原因,并设计补偿算法来减小掩模台位置误差,再通过MATLAB软件对模型进行仿真,发现耦合系数具有收敛性;最后提出一种误差校准方法,以双频激光干涉仪测量系统为基准,利用最小二乘法拟合平面光栅尺位置模型的自由度耦合系数。结果表明,该算法能有效地对掩模台的阿贝误差与余弦误差进行补偿,实现5 nm的测量系统不确定度。

Abstract

To realize the horizontal positioning of a reticle stage with three degrees of freedom and high accuracy, it needs to establish an accurate multi-degree of freedom decoupling measurement model in the reticle-stage-measurement system. In this study, a two-dimensional diffraction planar grating is used to establish a reticle stage degree-of-freedom position measurement system, and the main reasons for the deviation in the position of the reticle stage are analyzed in terms of the multiple installation errors that are caused by the planar grating and read head. Firstly, the displacement model of the three degrees of freedom of the reticle stage is designed according to the installation layout; then, the installation errors of the planar grating and read head are combined to analyze the cause of the Abbe and cosine errors generated by the position of the reticle stage. A compensation algorithm is designed to reduce the position error of the reticle stage and then the model is simulated using MATLAB software, observing the convergence of coupling coefficient. Finally, a calibration error method is proposed. Using the dual-frequency laser interferometer measurement system as the benchmark and using the least squares method, the coupling coefficient of the degree of freedom of the planar grating position model is determined. Experimental results show that the proposed algorithm can effectively compensate the Abbe and cosine errors of the reticle stage; thus, the uncertainty in the measurement system reaches 5 nm.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.231202

所属栏目:仪器,测量与计量

基金项目:国家科技重大专项;

收稿日期:2019-03-26

修改稿日期:2019-06-24

网络出版日期:2019-12-01

作者单位    点击查看

郝春晓:桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004
张文涛:桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004上海微电子装备(集团)股份有限公司, 上海 201203
王献英:上海微电子装备(集团)股份有限公司, 上海 201203
黄逊志:上海微电子装备(集团)股份有限公司, 上海 201203

联系人作者:郝春晓(glietzwt@163.com)

备注:国家科技重大专项;

【1】Zhang X, Liu H B, Gu W, et al. A survey on the development of global lithography machines and the localization of lithography equipment Wireless Internet Technology[J]. 0, 2018(19): 110-111, 118.
张霞, 刘宏波, 顾文, 等. 全球光刻机发展概况以及光刻机装备国产化 无线互联科技[J]. 0, 2018(19): 110-111, 118.

【2】Wu T T. Development and experimental study of a multi-degree-of-freedom simultaneous measurement system for two-dimensional stage [D]. Anhui: Hefei University of Technology. 2018, 20-28.
伍婷婷. 二维工作台多自由度同时测量系统的研制及实验研究 [D]. 安徽: 合肥工业大学. 2018, 20-28.

【3】Liu C H, Jywe W Y, Hsu C C, et al. Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage [J]. Review of Scientific Instruments. 2005, 76(5): 055110.

【4】Zhang Z P, Menq C H. Laser interferometric system for six-axis motion measurement [J]. Review of Scientific Instruments. 2007, 78(8): 083107.

【5】Mao S. Key technologies study of dynamic displacement calibration for high speed heterodyne laser interferometer based on the same measurement trajectory [D]. Harbin: Harbin Institute of Technology. 2017, 56-82.
毛帅. 基于共测量轨迹的快速外差激光干涉仪动态校准关键技术 [D]. 哈尔滨: 哈尔滨工业大学. 2017, 56-82.

【6】Chi F, Zhu Y, Zhang Z P, et al. Environment compensation technologies in dual-frequency laser interferometer measurement system [J]. Chinese Journal of Lasers. 2014, 41(4): 0408004.
池峰, 朱煜, 张志平, 等. 双频激光干涉测量中的环境补偿技术 [J]. 中国激光. 2014, 41(4): 0408004.

【7】Huang M H, Wang H, Chen X, et al. Research on the error compensation system of linear encoder''''s measuring precision Modular Machine Tool & Automatic Manufacturing Technique[J]. 0, 2017(12): 81-84.
黄明辉, 王晗, 陈新, 等. 光栅尺测量精度误差补偿系统研究 组合机床与自动化加工技术[J]. 0, 2017(12): 81-84.

【8】Wu Y F. Design and research on heterodyne planer grating encoder with nanometer resolution [D]. Chengdu: University of Electronic Science and Technology of China. 2015, 42-63.
吴亚风. 高精度平面光栅干涉仪的设计与研究 [D]. 成都: 电子科技大学. 2015, 42-63.

【9】Shang P, Xia H J, Fei Y T. Research status and developing trends of diffraction grating interferometer measurement system [J]. Optical Technique. 2011, 37(3): 313-316.
尚平, 夏豪杰, 费业泰. 衍射式光栅干涉测量系统发展现状及趋势 [J]. 光学技术. 2011, 37(3): 313-316.

【10】Wang J. Research on 3-DOF grating interference measurement model of mask table [D]. Harbin: Harbin Institute of Technology. 2017, 40-59.
王静. 掩模台三自由度光栅干涉测量模型研究 [D]. 哈尔滨: 哈尔滨工业大学. 2017, 40-59.

【11】Chen J B. Design and experimental study of ultra-precision displacement measurement for grating interferometer positioning system based on stripe phase shift [D]. Shanghai: Shanghai Jiao Tong University. 2015, 61-82.
陈家宝. 基于条纹相移的光栅干涉仪定位系统超精密位移测量方法与实验研究 [D]. 上海: 上海交通大学. 2015, 61-82.

【12】Dang B S, Xiong X M, Wang X Y, et al. Ultra-precision encoder system for displacement measurement [J]. Laser Journal. 2018, 39(9): 42-46.
党宝生, 熊显名, 王献英, 等. 超精密光栅尺位移测量系统 [J]. 激光杂志. 2018, 39(9): 42-46.

【13】Cheng J S. Study on interferometer measurement error model in wafer stage [D]. Wuhan: Huazhong University of Science and Technology. 2008, 30-45.
程吉水. 工件台激光干涉仪测量误差模型研究 [D]. 武汉: 华中科技大学. 2008, 30-45.

【14】Teng W, Zhou Y F, Mu H H, et al. An algorithm on laser measurement model of ultra-precision motion stage and error compensation [J]. China Mechanical Engineering. 2009, 20(12): 1492-1497.
滕伟, 周云飞, 穆海华, 等. 超精密运动台激光测量模型及误差补偿算法 [J]. 中国机械工程. 2009, 20(12): 1492-1497.

【15】Li S W, Luo K, Wang Y C, et al. Voltage calibration coefficients extracting based on the least squares method [J]. Journal of Detection & Control. 2017, 39(6): 16-20.
李世文, 罗凯, 王莹澈, 等. 基于最小二乘法的数据采集仪电压校准系数提取方法 [J]. 探测与控制学报. 2017, 39(6): 16-20.

【16】Zhang W Y, Song J. The principle of stepper wafer stage positioning based on the dual-frequency laser interferometer and fault diagnosis [J]. Equipment for Electronic Products Manufacturing. 2016, 45(Z1): 27-30.
张文雅, 宋健. 基于双频激光干涉仪的投影光刻机工作台定位原理与故障分析 [J]. 电子工业专用设备. 2016, 45(Z1): 27-30.

【17】Zhang W T, Du H, Xiong X M, et al. Hardware-in-the-loop simulation of high precision displacement measurement system [J]. Chinese Journal of Lasers. 2019, 46(2): 0204001.
张文涛, 杜浩, 熊显名, 等. 高精度位移测量系统的硬件在环仿真 [J]. 中国激光. 2019, 46(2): 0204001.

引用该论文

Hao Chunxiao,Zhang Wentao,Wang Xianying,Huang Xunzhi. Analysis and Verification of Position Error of Reticle Stage Based on Planar Grating[J]. Laser & Optoelectronics Progress, 2019, 56(23): 231202

郝春晓,张文涛,王献英,黄逊志. 基于平面光栅尺的掩模台位置误差分析与验证[J]. 激光与光电子学进展, 2019, 56(23): 231202

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF