首页 > 论文 > Photonics Research > 8卷 > 10期(pp:1586-1598)

Design of a multichannel photonic crystal dielectric laser accelerator

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

To be useful for most scientific and medical applications, compact particle accelerators will require much higher average current than enabled by current architectures. For this purpose, we propose a photonic crystal architecture for a dielectric laser accelerator, referred to as a multi-input multi-output silicon accelerator (MIMOSA), that enables simultaneous acceleration of multiple electron beams, increasing the total electron throughput by at least 1 order of magnitude. To achieve this, we show that the photonic crystal must support a mode at the Γ point in reciprocal space, with a normalized frequency equal to the normalized speed of the phase-matched electron. We show that the figure of merit of the MIMOSA can be inferred from the eigenmodes of the corresponding infinitely periodic structure, which provides a powerful approach to design such devices. Additionally, we extend the MIMOSA architecture to electron deflectors and other electron manipulation functionalities. These additional functionalities, combined with the increased electron throughput of these devices, permit all-optical on-chip manipulation of electron beams in a fully integrated architecture compatible with current fabrication technologies, which opens the way to unconventional electron beam shaping, imaging, and radiation generation.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.394127

所属栏目:Nanophotonics and Photonic Crystals

基金项目:Gordon and Betty Moore Foundation10.13039/100000936;

收稿日期:2020-04-01

录用日期:2020-08-07

网络出版日期:2020-08-10

作者单位    点击查看

Zhexin Zhao:Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
Dylan S. Black:Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
R. Joel England:SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
Tyler W. Hughes:Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
Yu Miao:Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
Olav Solgaard:Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
Robert L. Byer:Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
Shanhui Fan:Ginzton Laboratory, Stanford University, Stanford, California 94305, USA

联系人作者:Shanhui Fan(shanhui@stanford.edu)

备注:Gordon and Betty Moore Foundation10.13039/100000936;

【1】V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse and K. T. Phuoc. Principles and applications of compact laser-plasma accelerators. Nat. Phys. 4, 447-453(2008).

【2】E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. D. Miller and F. X. K?rtner. Terahertz-driven linear electron acceleration. Nat. Commun. 6, (2015).

【3】D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis and F. X. K?rtner. Segmented terahertz electron accelerator and manipulator (steam). Nat. Photonics. 12, 336-342(2018).

【4】R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C.-K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C.-M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y.-C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner and R. B. Yoder. Dielectric laser accelerators. Rev. Mod. Phys. 86, 1337-1389(2014).

【5】T. Plettner, P. Lu and R. Byer. Proposed few-optical cycle laser-driven particle accelerator structure. Phys. Rev. ST Accel. Beams. 9, (2006).

【6】E. Peralta, K. Soong, R. England, E. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish and R. L. Byer. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature. 503, 91-94(2013).

【7】J. Breuer and P. Hommelhoff. Laser-based acceleration of nonrelativistic electrons at a dielectric structure. Phys. Rev. Lett. 111, (2013).

【8】J. Breuer, J. McNeur and P. Hommelhoff. Dielectric laser acceleration of electrons in the vicinity of single and double grating structures-theory and simulations. J. Phys. B. 47, (2014).

【9】D. Cesar, J. Maxson, X. Shen, K. Wootton, S. Tan, R. England and P. Musumeci. Enhanced energy gain in a dielectric laser accelerator using a tilted pulse front laser. Opt. Express. 26, 29216-29224(2018).

【10】D. Cesar, S. Custodio, J. Maxson, P. Musumeci, X. Shen, E. Threlkeld, R. England, A. Hanuka, I. Makasyuk, E. Peralta, K. P. Wootton and Z. Wu. High-field nonlinear optical response and phase control in a dielectric laser accelerator. Commun. Phys. 1, (2018).

【11】K. P. Wootton, Z. Wu, B. M. Cowan, A. Hanuka, I. V. Makasyuk, E. A. Peralta, K. Soong, R. L. Byer and R. J. England. Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses. Opt. Lett. 41, 2696-2699(2016).

【12】K. J. Leedle, A. Ceballos, H. Deng, O. Solgaard, R. F. Pease, R. L. Byer and J. S. Harris. Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures. Opt. Lett. 40, 4344-4347(2015).

【13】T. Hughes, G. Veronis, K. P. Wootton, R. J. England and S. Fan. Method for computationally efficient design of dielectric laser accelerator structures. Opt. Express. 25, 15414-15427(2017).

【14】T. W. Hughes, S. Tan, Z. Zhao, N. V. Sapra, K. J. Leedle, H. Deng, Y. Miao, D. S. Black, O. Solgaard, J. S. Harris, J. Vuckovic, R. L. Byer, S. Fan, R. J. England, Y. J. Lee and M. Qi. On-chip laser-power delivery system for dielectric laser accelerators. Phys. Rev. Appl. 9, (2018).

【15】T. W. Hughes, R. J. England and S. Fan. Reconfigurable photonic circuit for controlled power delivery to laser-driven accelerators on a chip. Phys. Rev. Appl. 11, (2019).

【16】S. Tan, Z. Zhao, K. Urbanek, T. Hughes, Y. J. Lee, S. Fan, J. S. Harris and R. L. Byer. Silicon nitride waveguide as a power delivery component for on-chip dielectric laser accelerators. Opt. Lett. 44, 335-338(2019).

【17】Z. Zhao, T. W. Hughes, S. Tan, H. Deng, N. Sapra, R. J. England, J. Vuckovic, J. S. Harris, R. L. Byer and S. Fan. Design of a tapered slot waveguide dielectric laser accelerator for sub-relativistic electrons. Opt. Express. 26, 22801-22815(2018).

【18】N. V. Sapra, K. Y. Yang, D. Vercruysse, K. J. Leedle, D. S. Black, R. J. England, L. Su, R. Trivedi, Y. Miao, O. Solgaard, R. L. Byer and J. Vu?kovi?. On-chip integrated laser-driven particle accelerator. Science. 367, 79-83(2020).

【19】U. Niedermayer, T. Egenolf, O. Boine-Frankenheim and P. Hommelhoff. Alternating-phase focusing for dielectric-laser acceleration. Phys. Rev. Lett. 121, (2018).

【20】B. Naranjo, A. Valloni, S. Putterman and J. Rosenzweig. Stable charged-particle acceleration and focusing in a laser accelerator using spatial harmonics. Phys. Rev. Lett. 109, (2012).

【21】K. Wootton, J. McNeur and K. Leedle. Dielectric laser accelerators: designs, experiments, and applications. Rev. Accel. Sci. Technol. 9, 105-126(2016).

【22】A. Ody, P. Musumeci, J. Maxson, D. Cesar, R. England and K. Wootton. Flat electron beam sources for DLA accelerators. Nucl. Instrum. Methods Phys. Res. A. 865, 75-83(2017).

【23】D. H. Whittum and S. G. Tantawi. Switched matrix accelerator. Rev. Sci. Instrum. 72, 73-91(2001).

【24】D. H. Whittum and S. G. Tantawi. Active millimeter wave accelerator with parallel beams. (1998).

【25】F. Zimmermann, M. Hill and D. Whittum. New concepts for a compact 5-TeV collider. (1998).

【26】X. E. LinX. E. Lin. Photonic band gap fiber accelerator. Phys. Rev. ST Accel. Beams. 4, (2001).

【27】B. M. CowanB. M. Cowan. Three-dimensional dielectric photonic crystal structures for laser-driven acceleration. Phys. Rev. ST Accel. Beams. 11, (2008).

【28】K. J. Leedle, D. S. Black, Y. Miao, K. E. Urbanek, A. Ceballos, H. Deng, J. S. Harris, O. Solgaard and R. L. Byer. Phase-dependent laser acceleration of electrons with symmetrically driven silicon dual pillar gratings. Opt. Lett. 43, 2181-2184(2018).

【29】D. S. Black, K. J. Leedle, Y. Miao, U. Niedermayer, R. L. Byer, O. Solgaard and ACHIP Collaboration. Laser-driven electron lensing in silicon microstructures. Phys. Rev. Lett. 122, (2019).

【30】J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade. Photonic Crystals Molding the Flow of Light. : Princeton University, (2008).

【31】U. Niedermayer, T. Egenolf and O. Boine-Frankenheim. Beam dynamics analysis of dielectric laser acceleration using a fast 6D tracking scheme. Phys. Rev. ST Accel. Beams. 20, (2017).

【32】R. L. ByerR. L. Byer. Development of high-gradient dielectric laser-driven particle accelerator structures. : Stanford University, (2013).

【33】Y. Wei, G. Xia, J. Smith and C. Welsch. Dual-gratings with a Bragg reflector for dielectric laser-driven accelerators. Phys. Plasmas. 24, (2017).

【34】Y. Miao, D. S. Black, K. J. Leedle, Z. Zhao, H. Deng, A. Ceballos, R. L. Byer, J. S. Harris and O. Solgaard. Surface treatments of dielectric laser accelerators for increased laser-induced damage threshold. Opt. Lett. 45, 391-394(2020).

【35】W. Shin and S. Fan. Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers. J. Comput. Phys. 231, 3406-3431(2012).

【36】Y. J. LeeY. J. Lee. Ultrafast laser-induced damage threshold of the optical materials in near-infrared region. : Purdue University, (2017).

【37】B. Stuart, M. Feit, A. Rubenchik, B. Shore and M. Perry. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 2248-2251(1995).

【38】L. Sch?chter, R. L. Byer and R. H. Siemann. Optical accelerator: scaling laws and figures of merit. AIP Conf. Proc. 647, 310-323(2002).

【39】R. SiemannR. Siemann. Energy efficiency of laser driven, structure based accelerators. Phys. Rev. ST Accel. Beams. 7, (2004).

【40】J. McNeur, M. Kozák, N. Sch?nenberger, K. J. Leedle, H. Deng, A. Ceballos, H. Hoogland, A. Ruehl, I. Hartl, R. Holzwarth, O. Solgaard, J. S. Harris, R. L. Byer and P. Hommelhoff. Elements of a dielectric laser accelerator. Optica. 5, 687-690(2018).

【41】R. Tiberio, D. Carr, M. Rooks, S. Mihailov, F. Bilodeau, J. Albert, D. Stryckman, D. Johnson, K. Hill, A. McClelland and B. J. Hughes. Fabrication of electron beam generated, chirped, phase mask (1070.11–1070.66 nm) for fiber Bragg grating dispersion compensator. J. Vac. Sci. Technol. B. 16, 3237-3240(1998).

【42】D. S. Black, U. Niedermayer, Y. Miao, Z. Zhao, O. Solgaard, R. L. Byer and K. J. Leedle. Net acceleration and direct measurement of attosecond electron pulses in a silicon dielectric laser accelerator. Phys. Rev. Lett. 123, (2019).

【43】D. P. Grote, E. Henestroza and J. W. Kwan. Design and simulation of a multibeamlet injector for a high current accelerator. Phys. Rev. ST Accel. Beams. 6, (2003).

【44】Y. Yang, A. Massuda, C. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer and M. Solja?i?. Maximal spontaneous photon emission and energy loss from free electrons. Nat. Phys. 14, 894-899(2018).

【45】N. Z. Zhao, I. A. Williamson, Z. Zhao, S. Boutami and S. Fan. Penetration depth reduction with plasmonic metafilms. ACS Photon. 6, 2049-2055(2019).

【46】R. SousaR. Sousa. Dose rate influence on deep dose deposition using a 6 MV X-ray beam from a linear accelerator. Braz. J. Phys. 39, 292-296(2009).

【47】A. Tafel, S. Meier, J. Ristein and P. Hommelhoff. Femtosecond laser-induced electron emission from nanodiamond-coated tungsten needle tips. Phys. Rev. Lett. 123, (2019).

【48】C. Luo, M. Ibanescu, S. G. Johnson and J. Joannopoulos. Cerenkov radiation in photonic crystals. Science. 299, 368-371(2003).

【49】A. CeballosA. Ceballos. Silicon microstructures for electron acceleration. Advanced Accelerator Concepts Workshop. (2014).

【50】C. M. Sears, E. Colby, R. Ischebeck, C. McGuinness, J. Nelson, R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner and R. L. Byer. Production and characterization of attosecond electron bunch trains. Phys. Rev. ST Accel. Beams. 11, (2008).

【51】N. Sch?nenberger, A. Mittelbach, P. Yousefi, J. McNeur, U. Niedermayer and P. Hommelhoff. Generation and characterization of attosecond microbunched electron pulse trains via dielectric laser acceleration. Phys. Rev. Lett. 123, (2019).

引用该论文

Zhexin Zhao, Dylan S. Black, R. Joel England, Tyler W. Hughes, Yu Miao, Olav Solgaard, Robert L. Byer, and Shanhui Fan, "Design of a multichannel photonic crystal dielectric laser accelerator," Photonics Research 8(10), 1586-1598 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF