Photonics Research, 2020, 8 (10): 10001586, Published Online: Sep. 23, 2020  

Design of a multichannel photonic crystal dielectric laser accelerator Download: 545次

Author Affiliations
1 Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
2 SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
Abstract
To be useful for most scientific and medical applications, compact particle accelerators will require much higher average current than enabled by current architectures. For this purpose, we propose a photonic crystal architecture for a dielectric laser accelerator, referred to as a multi-input multi-output silicon accelerator (MIMOSA), that enables simultaneous acceleration of multiple electron beams, increasing the total electron throughput by at least 1 order of magnitude. To achieve this, we show that the photonic crystal must support a mode at the Γ point in reciprocal space, with a normalized frequency equal to the normalized speed of the phase-matched electron. We show that the figure of merit of the MIMOSA can be inferred from the eigenmodes of the corresponding infinitely periodic structure, which provides a powerful approach to design such devices. Additionally, we extend the MIMOSA architecture to electron deflectors and other electron manipulation functionalities. These additional functionalities, combined with the increased electron throughput of these devices, permit all-optical on-chip manipulation of electron beams in a fully integrated architecture compatible with current fabrication technologies, which opens the way to unconventional electron beam shaping, imaging, and radiation generation.

Zhexin Zhao, Dylan S. Black, R. Joel England, Tyler W. Hughes, Yu Miao, Olav Solgaard, Robert L. Byer, Shanhui Fan. Design of a multichannel photonic crystal dielectric laser accelerator[J]. Photonics Research, 2020, 8(10): 10001586.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!