首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170627--1)

光纤频移干涉腔衰荡折射率传感方法研究

Fiber Cavity Ring-Down Refractive Index Sensing Method Based on Frequency-Shifted Interferometry

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了一种基于频移干涉原理的新型连续波光纤腔衰荡液体折射率传感方法,采用熔融拉锥方法制作锥形光纤传感探头,并对不同浓度下液体的折射率进行了实验研究。结果表明,溶液质量分数小于9%时,NaCl和葡萄糖溶液的探测灵敏度分别为3.779 dB·RIU -1和6.413 dB·RIU -1(RIU为折射率单元),系统的最低检测限为10 -4。在40 min的连续观察时间内,腔内损耗的标准差小于0.4%,系统表现出良好的稳定性。与传统技术相比,该技术无需高速探测设备,降低了对硬件设备的要求。该系统具有结构简单、成本低、灵敏度高等优点,在化学探测、生物传感领域具有一定的应用前景。

Abstract

A novel continuous-wave fiber optics cavity ring-down refractive index sensing method based on the frequency-shifted interferometry is researched. We made a sensor by using a section of fused fiber optics taper in the fiber ring-down cavity to experimentally study the refractive index of liquids at different concentrations. The experimental results show that the detection sensitivities of NaCl and glucose solutions are 3.779 dB·RIU -1 and 6.413 dB·RIU -1 (RIU is refractivity unit), respectively, in the range of solution mass fraction less than 9%, and the minimum detection limit of the system is 10 -4. The relative deviation of measured cavity loss is less than 0.4% over 40 min continuous observation, showing good stability. In contrast to conventional cavity ring-down schemes, the frequency-shifted interferometry does not require fast detection electronics and reduces the need for hardware devices. The sensing system has the advantages of simple structure, low cost and high sensitivity, and has some application prospects of chemical detection and biosensing.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170627

所属栏目:功能光纤

基金项目:国家自然科学基金、中国预研领域基金;

收稿日期:2019-03-18

修改稿日期:2019-04-25

网络出版日期:2019-09-01

作者单位    点击查看

张浩然:武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430070
周次明:武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430070
范典:武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430070
周爱:武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430070
赵雨佳:武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430070

联系人作者:范典(fandian@whut.edu.cn)

备注:国家自然科学基金、中国预研领域基金;

【1】Garcìa-Valenzuela A, Pe?a-Gomar M, Garcìa-Segundo C et al. Dynamic reflectometry near the critical angle for high-resolution sensing of the index of refraction. Sensors and Actuators B: Chemical. 52(3), 236-242(1998).

【2】Lai J C, Zhang Y Y, Li Z H et al. Complex refractive index measurement of biological tissues by attenuated total reflection ellipsometry. Applied Optics. 49(16), 3235-3238(2010).

【3】Monzón-Hernández D and Villatoro J. High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor. Sensors and Actuators B: Chemical. 115(1), 227-231(2006).

【4】Han M, Guo F W and Lu Y F. Optical fiber refractometer based on cladding-mode Bragg grating. Optics Letters. 35(3), 399-401(2010).

【5】Allsop T, Reeves R, Webb D J et al. A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer. Review of Scientific Instruments. 73(4), 1702-1705(2002).

【6】Huang M, Gu C S, Sun B et al. Refractive index sensor based on tilted-fiber Bragg grating coated with graphene. Chinese Journal of Lasers. 44(12), (2017).
黄梦, 顾昌晟, 孙兵 等. 基于石墨烯涂覆倾斜光纤光栅的折射率传感. 中国激光. 44(12), (2017).

【7】Peng X L, Li B and Li Y L. Research progress of refractive index and concentration sensors based on micro-nanofiber Bragg grating. Laser & Optoelectronics Progress. 55(12), (2018).
彭星玲, 李兵, 李玉龙. 微纳光纤布拉格光栅折射率与浓度传感器研究进展. 激光与光电子学进展. 55(12), (2018).

【8】Fraz?o O, Caldas P, Santos J L et al. Fabry-Perot refractometer based on an end-of-fiber polymer tip. Optics Letters. 34(16), 2474-2476(2009).

【9】Song P, Jing Z G, Li A et al. Refractive index measurement of liquid based on open fiber Fabry-Perot interferometer. Chinese Journal of Lasers. 44(12), (2017).
宋鹏, 荆振国, 李昂 等. 基于光纤开放式法布里-珀罗干涉仪的液体折射率测量. 中国激光. 44(12), (2017).

【10】Wang Y, Yang M W, Wang D N et al. Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity. Journal of the Optical Society of America B. 27(3), 370-374(2010).

【11】Anderson D Z, Frisch J C and Masser C S. Mirror reflectometer based on optical cavity decay time. Applied Optics. 23(8), 1238-1245(1984).

【12】Berden G and Engeln R. Cavity ring-down spectroscopy: techniques and applications. Great Britain: Wiley-Blackwell. 2-5(2009).

【13】Stewart G, Atherton K, Yu H B et al. An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements. Measurement Science and Technology. 12(7), 843-849(2001).

【14】Tan Z Q, Long X W and Zhang B. Detector''''s response characteristic and its influence on metrical result of continuous-wave cavity ring-down technique. Chinese Journal of Lasers. 36(4), 959-963(2009).
谭中奇, 龙兴武, 张斌. 探测器的响应特性及对连续波腔衰荡技术测量的影响. 中国激光. 36(4), 959-963(2009).

【15】Shang J B, Zhang W G and Wei S L. Temperature sensor of fiber micro-cavity based on cavity ring-down spectroscopy technology. Chinese Journal of Lasers. 38(9), (2011).
尚佳彬, 张伟刚, 魏石磊. 基于腔衰荡光谱技术的光纤微腔温度传感器. 中国激光. 38(9), (2011).

【16】Ni N, Chan C C, Xia L et al. Fiber cavity ring-down refractive index sensor. IEEE Photonics Technology Letters. 20(16), 1351-1353(2008).

【17】Wang C J and Herath C. High-sensitivity fiber-loop ringdown evanescent-field index sensors using single-mode fiber. Optics Letters. 35(10), 1629-1631(2010).

【18】Zhou K M, Webb D J, Mou C B et al. Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser. IEEE Photonics Technology Letters. 21(22), 1653-1655(2009).

【19】Wong W C, Zhou W J, Chan C C et al. Cavity ringdown refractive index sensor using photonic crystal fiber interferometer. Sensors and Actuators B: Chemical. 161(1), 108-113(2012).

【20】Paul P H and Kychakoff G. Fiber-optic evanescent field absorption sensor. Applied Physics Letters. 51(1), 12-14(1987).

【21】Qi B, Qian L, Tausz A et al. Frequency-shifted Mach-Zehnder interferometer for locating multiple weak reflections along a fiber link. IEEE Photonics Technology Letters. 18(1), 295-297(2006).

【22】Ye F, Qi B and Qian L. Continuous-wave fiber cavity ring-down measurements using frequency-shifted interferometry. Optics Letters. 36(11), 2080-2082(2011).

【23】Ye F, Zhou C M, Qi B et al. Continuous-wave cavity ring-down evanescent-field sensing with a broadband source based on frequency-shifted interferometry. Sensors and Actuators B: Chemical. 184, 150-155(2013).

【24】Tian H, Zhou C M, Fan D et al. Continuous-wave fiber cavity ring-down magnetic field sensing method based on frequency-shifted interferometry. Chinese Optics Letters. 12(12), (2014).

【25】Tian H, Zhou C M, Fan D et al. Continuous-wave frequency-shifted interferometry cavity ring-down gas sensing with differential optical absorption. IEEE Photonics Journal. 7(3), (2015).

【26】Ou Y W, Cheng C F, Chen Z H et al. Continuous-wave fiber cavity ringdown pressure sensing based on frequency-shifted interferometry. Sensors. 18(4), (2018).

引用该论文

Haoran Zhang, Ciming Zhou, Dian Fan, Ai Zhou, Yujia Zhao. Fiber Cavity Ring-Down Refractive Index Sensing Method Based on Frequency-Shifted Interferometry[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170627

张浩然, 周次明, 范典, 周爱, 赵雨佳. 光纤频移干涉腔衰荡折射率传感方法研究[J]. 激光与光电子学进展, 2019, 56(17): 170627

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF