首页 > 论文 > 中国激光 > 47卷 > 9期(pp:900001--1)

粉末床激光熔融过程中飞溅行为的研究进展

Research Progress on Spatter Behavior in Laser Powder Bed Fusion

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在粉末床激光熔融(LPBF)过程中,金属粉末在高能量激光束的作用下快速熔化与凝固,这一复杂的导热过程伴随着飞溅现象。飞溅本质上是在激光与金属粉末作用区及其附近的材料向周围运动的过程,这些材料不仅会落到成形区域影响成形零件的质量,还会落到非成形区域污染干净的粉末,是成形过程中的不利因素。此外,飞溅携带有丰富的信息,可以用于成形过程的监控。对飞溅行为进行深入分析与研究有助于完善LPBF成形的理论基础,并有望解决LPBF加工过程的可靠性问题,最终提升产品的质量。以LPBF工艺过程中的飞溅行为为研究对象,结合近几年的相关研究,综述了当前国内外LPBF过程中的飞溅行为以及基于飞溅特征的过程监控与质量控制技术的现状。

Abstract

During the laser powder bed fusion (LPBF) process, metal powder is rapidly melted and solidified under the action of a high-energy laser beam. The spatter phenomenon accompanies the complex heat conduction process. Spatter is essentially a process by which materials in and near the laser and metal powder areas move to the surrounding area. These materials not only fall to the molding area and affect the quality of the molded part but also fall to the non-molded area to contaminate the clean powder. This is a disadvantage of the molding process. In addition, spatter carries rich information, which can be used to monitor the forming process. Detailed analysis and study are expected to improve the theoretical basis of LPBF forming, solve the process reliability problem of LPBF technology, and ultimately improve the product quality. Therefore, this study takes the spatter behavior in the LPBF process as the research object, combines with the relevant research in recent years to summarize the spatter behavior in the LPBF process at home and abroad and the status of process monitoring and quality control technology based on spatter characteristics.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TG665; TN249

DOI:10.3788/CJL202047.0900001

所属栏目:综述

基金项目:国家自然科学基金、华南理工大学基本科研业务费;

收稿日期:2020-03-09

修改稿日期:2020-04-08

网络出版日期:2020-09-01

作者单位    点击查看

王迪:华南理工大学机械与汽车工程学院, 广东 广州 510640
欧远辉:华南理工大学机械与汽车工程学院, 广东 广州 510640
窦文豪:华南理工大学机械与汽车工程学院, 广东 广州 510640
杨永强:华南理工大学机械与汽车工程学院, 广东 广州 510640
谭超林:华南理工大学机械与汽车工程学院, 广东 广州 510640

联系人作者:杨永强(mewdlaser@scut.edu.cn)

备注:国家自然科学基金、华南理工大学基本科研业务费;

【1】National Standardization Techinical Committee for Additive Manufacturing, . Additive manufacturing—. terminology: GB/T 35351—2017[S]. Beijing: China Standard Press, 2017.
全国增材制造标准化技术委员会. 增材制造术语: GB/T 35351—2017[S]. 北京: 中国标准出版社, 2017.

【2】Yang Y H. Analysis of classifications and characteristic of additive manufacturing(3D print) [J]. Advances in Aeronautical Science and Engineering. 2019, 10(3): 309-318.
3D打印)分类及研究进展 [J]. 航空工程进展. 2019, 10(3): 309-318.

【3】Wang H M. Materials'''' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronautica et Astronautica Sinica. 2014, 35(10): 2690-2698.
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报. 2014, 35(10): 2690-2698.

【4】Dou X H, An J W, Xu Y W. Application and verification of 3D printing technology in forming and manufacturing of complex components of light alloy New Technology & New Process[J]. 0, 2015(8): 89-91.
窦鑫红, 安君伟, 许雅勿. 激光增材制造技术在轻合金复杂构件成形加工中的应用验证 新技术新工艺[J]. 0, 2015(8): 89-91.

【5】Cao M S. Discussion on lightweight technology of metal 3D printing based on SLM and its application [J]. Guangdong Sericulture. 2018, 52(7): 26-27.
曹明顺. 基于SLM的金属3D打印轻量化技术及其应用探讨 [J]. 广东蚕业. 2018, 52(7): 26-27.

【6】Zhou S. The study and application on lightweight 3D metal printing based on selective laser melting technology [D]. Hangzhou: Zhejiang University. 2017, 1-68.
周松. 基于SLM的金属3D打印轻量化技术及其应用研究 [D]. 杭州: 浙江大学. 2017, 1-68.

【7】Zhang X J, Chueh Y H, Wei C, et al. Additive manufacturing of three-dimensional metal-glass functionally gradient material components by laser powder bed fusion with in situ powder mixing [J]. Additive Manufacturing. 2020, 33: 101113.

【8】Zhang D Y, Wang R Z, Zhao J Z, et al. Latest advance of laser direct manufacturing of metallic parts [J]. Chinese Journal of Lasers. 2010, 37(1): 18-25.
张冬云, 王瑞泽, 赵建哲, 等. 激光直接制造金属零件技术的最新进展 [J]. 中国激光. 2010, 37(1): 18-25.

【9】Grasso M L, Colosimo B M. Process defects and in situ monitoring methods in metal powder bed fusion: a review [J]. Measurement Science and Technology. 2017, 28(4): 044005.

【10】Gunenthiram V, Peyre P, Schneider M, et al. Analysis of laser-melt pool-powder bed interaction during the selective laser melting of a stainless steel [J]. Journal of Laser Applications. 2017, 29(2): 022303.

【11】Khairallah S A, Anderson A T, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones [J]. Acta Materialia. 2016, 108: 36-45.

【12】Liu Y, Yang Y Q, Mai S Z, et al. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder [J]. Materials & Design. 2015, 87: 797-806.

【13】Anwar A. Quang-cuong P. Spattering in selective laser melting : a review of spatter formation, effects and countermeasures . [C]∥Proceedings of the 3rd International Conference on Progress in Additive Manufacturing. 2018, 541-546.

【14】Wu S B, Dou W H, Yang Y Q, et al. Research progress of inspection technology for addition manufacturing of SLM metal [J]. Journal of Netshape Forming Engineering. 2019, 11(4): 37-50.
吴世彪, 窦文豪, 杨永强, 等. 面向激光选区熔化金属增材制造的检测技术研究进展 [J]. 精密成形工程. 2019, 11(4): 37-50.

【15】Spears T G, Gold S A. In-process sensing in selective laser melting (SLM) additive manufacturing [J]. Integrating Materials and Manufacturing Innovation. 2016, 5(1): 16-40.

【16】Repossini G, Laguzza V, Grasso M, et al. On the use of spatter signature for in situ monitoring of Laser Powder Bed Fusion [J]. Additive Manufacturing. 2017, 16: 35-48.

【17】Purtonen T, Kalliosaari A, Salminen A. Monitoring and adaptive control of laser processes [J]. Physics Procedia. 2014, 56: 1218-1231.

【18】Sun Y, Gao X D. Laser welding keyhole and spatter shape analysis method [J]. Welding Technology. 2014, 43(1): 15-18.
孙燕, 高向东. 激光焊匙孔与飞溅形态分析方法 [J]. 焊接技术. 2014, 43(1): 15-18.

【19】Semak V V, Matsunawa A. The role of recoil pressure in energy balance during laser materials processing [J]. Journal of Physics D. 1997, 30(18): 2541-2552.

【20】Ly S, Rubenchik A M, Khairallah S A, et al. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing [J]. Scientific Reports. 2017, 7(1): 4085.

【21】Deng J Q, Shi R K, Zhang Y. Numerical simulation of behavior characteristics of laser induced plasma during deep penetration laser welding [J]. Applied Laser. 2015, 35(1): 58-63.
邓集权, 史如坤, 张屹. 激光深熔焊接过程中的光致等离子体行为特征模拟 [J]. 应用激光. 2015, 35(1): 58-63.

【22】Li S, Chen G, Zhang M, et al. Dynamic keyhole profile during high-power deep-penetration laser welding [J]. Journal of Materials Processing Technology. 2014, 214(3): 565-570.

【23】Li S, Deng H, Zhang Y, et al. Study on material evaporation and molten pool behavior induced by high power laser beam [J]. Electric Welding Machine. 2016, 46(10): 7-13, 18.
李时春, 邓辉, 张焱, 等. 高功率激光照射致材料气化与熔池行为 [J]. 电焊机. 2016, 46(10): 7-13, 18.

【24】Wu D S, Hua X M, Li F, et al. Understanding of spatter formation in fiber laser welding of 5083 aluminum alloy [J]. International Journal of Heat and Mass Transfer. 2017, 113: 730-740.

【25】King W E, Barth H D, Castillo V M, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing [J]. Journal of Materials Processing Technology. 2014, 214(12): 2915-2925.

【26】Matthews M J, Guss G, Khairallah S A, et al. Denudation of metal powder layers in laser powder bed fusion processes [J]. Acta Materialia. 2016, 114: 33-42.

【27】Zhang M J, Chen G Y, Zhou Y, et al. Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate [J]. Applied Surface Science. 2013, 280: 868-875.

【28】Cunningham R, Zhao C, Parab N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging [J]. Science. 2019, 363(6429): 849-852.

【29】Esmaeilizadeh R, Ali U, Keshavarzkermani A, et al. On the effect of spatter particles distribution on the quality of Hastelloy X parts made by laser powder-bed fusion additive manufacturing [J]. Journal of Manufacturing Processes. 2019, 37: 11-20.

【30】Ye D S, Zhu K P. Fuh J Y H, et al. The investigation of plume and spatter signatures on melted states in selective laser melting [J]. Optics & Laser Technology. 2019, 111: 395-406.

【31】Yadroitsev I, Gusarov A, Yadroitsava I, et al. Single track formation in selective laser melting of metal powders [J]. Journal of Materials Processing Technology. 2010, 210(12): 1624-1631.

【32】Furumoto T, Egashira K, Munekage K, et al. Experimental investigation of melt pool behaviour during selective laser melting by high speed imaging [J]. CIRP Annals. 2018, 67(1): 253-256.

【33】Taheri Andani M, Dehghani R. Karamooz-Ravari M R, et al. Spatter formation in selective laser melting process using multi-laser technology [J]. Materials & Design. 2017, 131: 460-469.

【34】Wang D, Wu S B, Fu F, et al. Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties [J]. Materials & Design. 2017, 117: 121-130.

【35】Gunenthiram V, Peyre P, Schneider M, et al. Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process [J]. Journal of Materials Processing Technology. 2018, 251: 376-386.

【36】Bidare P, Bitharas I, Ward R M, et al. Fluid and particle dynamics in laser powder bed fusion [J]. Acta Materialia. 2018, 142: 107-120.

【37】Zheng H, Li H X, Lang L H, et al. Effects of scan speed on vapor plume behavior and spatter generation in laser powder bed fusion additive manufacturing [J]. Journal of Manufacturing Processes. 2018, 36: 60-67.

【38】Yin J, Yang L L, Yang X, et al. High-power laser-matter interaction during laser powder bed fusion [J]. Additive Manufacturing. 2019, 29: 100778.

【39】Yin J, Wang D Z, Yang L L, et al. Correlation between forming quality and spatter dynamics in laser powder bed fusion [J]. Additive Manufacturing. 2020, 31: 100958.

【40】Bruna-Rosso C, Demir A G, Previtali B. Selective laser melting finite element modeling: validation with high-speed imaging and lack of fusion defects prediction [J]. Materials & Design. 2018, 156: 143-153.

【41】Panwisawas C, Qiu C L, Anderson M J, et al. mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution [J]. Computational Materials Science. 2017, 126: 479-490.

【42】Qiu C L, Panwisawas C, Ward M, et al. On the role of melt flow into the surface structure and porosity development during selective laser melting [J]. Acta Materialia. 2015, 96: 72-79.

【43】Zhirnov I, Kotoban D V, Gusarov A V. Evaporation-induced gas-phase flows at selective laser melting [J]. Applied Physics A. 2018, 124(2): 1-9.

【44】Shi R P, Khairallah S, Heo T W, et al. Integrated simulation framework for additively manufactured Ti-6Al-4V: melt pool dynamics, microstructure, solid-state phase transformation, and microelastic response [J]. JOM. 2019, 71(10): 3640-3655.

【45】King W E, Anderson A T, Ferencz R M, et al. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges [J]. Applied Physics Reviews. 2015, 2(4): 041304.

【46】Gu D D, Dai D H, Xia M J, et al. Cross-scale physical mechanisms for structure and performance control of metal components processed by selective laser melting additive manufacturing [J]. Journal of Nanjing University of Aeronautics & Astronautics. 2017, 49(5): 645-652.
顾冬冬, 戴冬华, 夏木建, 等. 金属构件选区激光熔化增材制造控形与控性的跨尺度物理学机制 [J]. 南京航空航天大学学报. 2017, 49(5): 645-652.

【47】Simonelli M, Tuck C, Aboulkhair N T, et al. Astudy on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V [J]. Metallurgical and Materials Transactions A. 2015, 46(9): 3842-3851.

【48】Rao X W, Gu D D, Xi L X. Forming mechanism and mechanical properties of carbon nanotube reinforced aluminum matrix composites by selective laser melting [J]. Journal of Mechanical Engineering. 2019, 55(15): 1-9.
饶项炜, 顾冬冬, 席丽霞. 选区激光熔化成形碳纳米管增强铝基复合材料成形机制及力学性能研究 [J]. 机械工程学报. 2019, 55(15): 1-9.

【49】Yao Y S, Wang J, Chen Q B, et al. Research status of defects and defect treatment technology for laser additive manufactured products [J]. Laser & Optoelectronics Progress. 2019, 56(10): 100004.
姚燕生, 汪俊, 陈庆波, 等. 激光增材制造产品缺陷及其处理技术研究现状 [J]. 激光与光电子学进展. 2019, 56(10): 100004.

【50】Zhang X Y, Li X B, Tan Z, et al. Microstructure and mechanical properties of water atomized Cu-l0Sn alloy powder formed parts by selective laser melting [J]. Chinese Journal of Lasers. 2018, 45(10): 1002009.
张晓雅, 李现兵, 谈震, 等. 激光选区熔化水雾化Cu-10Sn合金粉末成形件的微观组织结构及力学性能研究 [J]. 中国激光. 2018, 45(10): 1002009.

【51】Vilaro T, Colin C, Bartout J D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting [J]. Metallurgical and Materials Transactions A. 2011, 42(10): 3190-3199.

【52】Qiu C L. Adkins N J E, Attallah M M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V [J]. Materials Science and Engineering: A. 2013, 578: 230-239.

【53】Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V [J]. Acta Materialia. 2010, 58(9): 3303-3312.

【54】Panwisawas C, Qiu C L, Sovani Y, et al. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting [J]. Scripta Materialia. 2015, 105: 14-17.

【55】Martin A A, Calta N P, Khairallah S A, et al. Dynamics of pore formation during laser powder bed fusion additive manufacturing [J]. Nature Communications. 2019, 10(1): 1987.

【56】Pan A Q, Zhang H, Wang Z M. Process parameters and microstructure of Ni-based single crystal superalloy processed by selective laser melting [J]. Chinese Journal of Lasers. 2019, 46(11): 1102007.
潘爱琼, 张辉, 王泽敏. 镍基单晶高温合金选区激光熔化成形工艺及组织 [J]. 中国激光. 2019, 46(11): 1102007.

【57】Zhu M L, Xuan F Z. Fatigue crack initiation potential from defects in terms of local stress analysis [J]. Chinese Journal of Mechanical Engineering. 2014, 27(3): 496-503.

【58】Miao Q Y, Liu M R, Zhao K, et al. Research progress on technologies of additive manufacturing of aluminum alloys [J]. Laser & Optoelectronics Progress. 2018, 55(1): 011405.
苗秋玉, 刘妙然, 赵凯, 等. 铝合金增材制造技术研究进展 [J]. 激光与光电子学进展. 2018, 55(1): 011405.

【59】Wang D, Ye G Z, Dou W H, et al. Influence of spatter particles contamination on densification behavior and tensile properties of CoCrW manufactured by selective laser melting [J]. Optics & Laser Technology. 2020, 121: 105678.

【60】Tang M, Pistorius P C. Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting [J]. International Journal of Fatigue. 2017, 94: 192-201.

【61】Alkahari M R, Furumoto T, Ueda T, et al. Meltpool and single track formation in selective laser sintering/selective laser melting [J]. Advanced Materials Research. 2014, 933: 196-201.

【62】Anwar A B, Pham Q C. Study of the spatter distribution on the powder bed during selective laser melting [J]. Additive Manufacturing. 2018, 22: 86-97.

【63】Anwar A B, Ibrahim I H, Pham Q C. Spatter transport by inert gas flow in selective laser melting: a simulation study [J]. Powder Technology. 2019, 352: 103-116.

【64】Bidare P, Bitharas I, Ward R M, et al. Manufacture. 2018, 130/131: 65-72.

【65】Scipioni Bertoli U, Guss G, Wu S, et al. In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing [J]. Materials & Design. 2017, 135: 385-396.

【66】Nandwana P, Peter W H, Dehoff R R, et al. Recyclability study on Inconel 718 and Ti-6Al-4V powders for use in electron beam melting [J]. Metallurgical and Materials Transactions B. 2016, 47(1): 754-762.

【67】Lott P, Schleifenbaum H, Meiners W, et al. Design of an optical system for the in situ process monitoring of selective laser melting (SLM) [J]. Physics Procedia. 2011, 12: 683-690.

【68】Lu R S, Wu A, Zhang T D, et al. Review on automated optical (visual) inspection and its applications in defect detection [J]. Acta Optica Sinica. 2018, 38(8): 0815002.
卢荣胜, 吴昂, 张腾达, 视觉, 等. 检测技术及其在缺陷检测中的应用综述 [J]. 光学学报. 2018, 38(8): 0815002.

【69】Zhao C, Fezzaa K, Cunningham R, et al. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction [J]. Scientific Reports. 2017, 7(1): 3602-3611.

【70】Leung C L A, Marussi S, Atwood R C, et al. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing [J]. Nature Communications. 2018, 9(1): 1355.

【71】Ye D S. Hsi Fuh J Y, Zhang Y J, et al. In situ monitoring of selective laser melting using plume and spatter signatures by deep belief networks [J]. ISA Transactions. 2018, 81: 96-104.

【72】Zhang Y J, Hong G S, Ye D S, et al. Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring [J]. Materials & Design. 2018, 156: 458-469.

【73】Yuan B D, Giera B, Guss G, et al. Semi-supervised convolutional neural networks for in situ video monitoring of selective laser melting[C]∥2019 IEEE Winter Conference on Applications of Computer Vision (WACV). 7-11 Jan. 2019, Waikoloa Village, HI, USA. New York: , 2019, 744-753.

【74】Bidare P. Maier R R J, Beck R J, et al. An open-architecture metal powder bed fusion system for in situ process measurements [J]. Additive Manufacturing. 2017, 16: 177-185.

引用该论文

Wang Di,Ou Yuanhui,Dou Wenhao,Yang Yongqiang,Tan Chaolin. Research Progress on Spatter Behavior in Laser Powder Bed Fusion[J]. Chinese Journal of Lasers, 2020, 47(9): 0900001

王迪,欧远辉,窦文豪,杨永强,谭超林. 粉末床激光熔融过程中飞溅行为的研究进展[J]. 中国激光, 2020, 47(9): 0900001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF