首页 > 论文 > 激光与光电子学进展 > 56卷 > 18期(pp:180001--1)

面向激光显示的红光半导体激光器的研究进展

Research Progress of Red Semiconductor Laser Diodes for Laser Display

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

激光显示具有色域大、寿命长、节能、环保等优势,是新一代重要的显示技术,红光半导体激光器则是其中的核心光源。随着激光显示产业的快速发展,人们对大功率红光半导体激光器的需求也不断增加。增大器件的输出功率、提高器件的光束质量已成为行业内的研究热点。主要介绍大功率红光半导体激光器的基本原理与技术难点,总结了目前国内外用于激光显示的红光半导体激光器的研究现状与进展,并对其未来的发展方向及前景进行分析。

Abstract

Laser display becomes a critical technique for the development of next-generation display technology because of its large color gamut, long lifetime, and environment-friendly attributes. Red semiconductor laser diodes form the core light sources of laser displays. With the rapid development of the laser display industry, the demand for high-power red semiconductor laser diodes also increases. Currently, industrial research is focused on increasing the output power and improving the beam quality of the device. Herein, we introduce the basic principles and technical difficulties associated with the high-power red semiconductor laser diodes. Further, we summarize the research status and progress with respect to the usage of red semiconductor laser diodes for laser display at home and abroad. We also analyze the future development directions and prospects for the application of red semiconductor laser diodes.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.180001

所属栏目:综述

基金项目:国家重点研发计划、国家自然科学基金、吉林省重点科技研发项目;

收稿日期:2019-03-20

修改稿日期:2019-04-01

网络出版日期:2019-09-01

作者单位    点击查看

孟雪:中国科学院长春光学精密机械与物理研究所, 发光学及应用国家重点实验室, 吉林 长春 130033中国科学院大学, 北京 100049
宁永强:中国科学院长春光学精密机械与物理研究所, 发光学及应用国家重点实验室, 吉林 长春 130033
张建伟:中国科学院长春光学精密机械与物理研究所, 发光学及应用国家重点实验室, 吉林 长春 130033
张星:中国科学院长春光学精密机械与物理研究所, 发光学及应用国家重点实验室, 吉林 长春 130033
彭航宇:中国科学院长春光学精密机械与物理研究所, 发光学及应用国家重点实验室, 吉林 长春 130033
秦莉:中国科学院长春光学精密机械与物理研究所, 发光学及应用国家重点实验室, 吉林 长春 130033
王立军:中国科学院长春光学精密机械与物理研究所, 发光学及应用国家重点实验室, 吉林 长春 130033

联系人作者:宁永强(ningyq@ciomp.ac.cn)

备注:国家重点研发计划、国家自然科学基金、吉林省重点科技研发项目;

【1】Li Y H. Research on gamut expansion of laser display. Jinan: Shandong University. 19-27(2012).
李义辉. 激光显示的色域扩展研究. 济南: 山东大学. 19-27(2012).

【2】Zhao F B, Wu H Y and Yang Y N. The technology and development of laser display Advanced Display. 2013(1/2), 27-30(0).
赵富宝, 武怀玉, 杨延宁. 浅议激光显示技术及其进展 现代显示. 2013(1/2), 27-30(0).

【3】Korpel A, Adler R, Desmares P et al. A television display using acoustic deflection and modulation of coherent light. Applied Optics. 5(10), 1667-1675(1966).

【4】Buckley E. Laser wavelength choices for pico-projector applications. Journal of Display Technology. 7(7), 402-406(2011).

【5】Moench H. New markets and new light-sources for projection. Proceedings of SPIE. 6911, (2008).

【6】Shi J, Tang M, Fu S N et al. Recent progress in RGB laser oscillation based on Pr 3+-doped fluoride glass fiber for laser display application . Laser & Optoelectronics Progress. 49(11), (2012).
石君, 唐明, 付松年 等. 面向激光显示应用的红绿蓝掺镨氟化物光纤激光器研究进展. 激光与光电子学进展. 49(11), (2012).

【7】Jeong H M, Park Y H and Cho Y C. Slow scanning electromagnetic scanner for laser display. Journal of Microlithography Microfabrication & Microsystems. 7(4), (2008).

【8】Buckley E. Detailed eye-safety analysis of laser-based scanned-beam projection systems. Journal of Display Technology. 8(3), 166-173(2012).

【9】Wang W L, Cao J Q, Guo S F et al. Research progress of gain-guided index-anti-guided fiber lasers. Laser & Optoelectronics Progress. 49(4), (2012).
王文亮, 曹涧秋, 郭少锋 等. 增益导引折射率反导引光纤激光器研究进展. 激光与光电子学进展. 49(4), (2012).

【10】Jiang J P. Semiconductor laser. (2000).
江剑平. 半导体激光器. (2000).

【11】Hino I, Gomyo A, Kobayashi K et al. Room-temperature pulsed operation of AlGaInP/GaInP/AlGaInP double heterostructure visible light laser diodes grown by metalorganic chemical vapor deposition. Applied Physics Letters. 43(11), 987-989(1983).

【12】Kobayashi K, Kawata S, Gomyo A et al. Room-temperature CW operation of AlGaInP double-heterostructure visible lasers. Electronics Letters. 21(20), 931-932(1985).

【13】Bour D P, Shealy J R, Wicks G W et al. Optical properties of AlxIn1-xP grown by organometallic vapor phase epitaxy. Applied Physics Letters. 50(10), 615-617(1987).

【14】Cao D S, Kimball A W and Stringfellow G B. Atmospheric pressure organometallic vapor-phase epitaxial growth of (AlxGa1-x)0.51In0.49P (x from 0 to 1) using trimethylalkyls. Journal of Applied Physics. 67(2), 739-744(1990).

【15】Tanaka H, Kawamura Y, Nojima S et al. InGaP/InGaAlP double-heterostructure and multiquantum-well laser diodes grown by molecular-beam epitaxy. Journal of Applied Physics. 61(5), 1713-1719(1987).

【16】Kumar V and Agawal S K. Physics of semiconductor devices. Proceedings of SPIE. 6(1), 98-99(1998).

【17】Honda S, Hamada H, Shono M et al. Transverse-mode stabilised 630 nm-band AlGaInP strained multiquantum-well laser diodes grown on misoriented substrates. Electronics Letters. 28(14), 1365-1367(1992).

【18】Pohl J, Bugge F, Blume G et al. Combined Mg/Zn p-type doping for AlGaInP laser diodes. Journal of Crystal Growth. 414, 215-218(2015).

【19】Esaki L and Tsu R. Superlattice and negative differential conductivity in semiconductors. IBM Journal of Research and Development. 14(1), 61-65(1970).

【20】Ikeda M, Toda A, Nakano K et al. Room-temperature continuous-wave operation of a GaInP/AlGaInP multiquantum well laser grown by metalorganic chemical vapor deposition. Applied Physics Letters. 50(16), 1033-1034(1987).

【21】Valster A, Meney A T, Downes J R et al. Strain-overcompensated GaInP-AlGaInP quantum-well laser structures for improved reliability at high-output powers. IEEE Journal of Selected Topics in Quantum Electronics. 3(2), 180-187(1997).

【22】Summers H D and Blood P. Room temperature operation of ultrashort wavelength (619 nm) AlGaInP/GaInP tensile strained quantum well lasers. Electronics Letters. 29(11), 1007-1008(1993).

【23】Smowton P M, Lewis G M, Blood P et al. Optimization of 635-nm tensile strained GaInP laser diodes. IEEE Journal of Selected Topics in Quantum Electronics. 9(5), 1246-1251(2003).

【24】Tanaka T, Yanagisawa H, Takimoto M et al. Tensile-strained AlGaInP single-quantum-well LDs emitting at 615 nm. Electronics Letters. 29(21), 1864-1866(1993).

【25】Bour D P, Treat D W, Beernink K J et al. 610-nm band AlGaInP single quantum well laser diode. IEEE Photonics Technology Letters. 6(2), 128-131(1994).

【26】Shimada N, Ohno A, Abe S et al. High-power 625-nm AlGaInP laser diode. IEEE Journal of Selected Topics in Quantum Electronics. 17(6), 1723-1726(2011).

【27】Skogen E and Raring J. DenBaars S, et al. Integration of high-gain and high-saturation-power active regions using quantum-well intermixing and offset-quantum-well regrowth. Electronics Letters. 40(16), 993-994(2004).

【28】Marsh H. Quantum well intermixing. Semiconductor Science and Technology. 8(6), 1136-1155(1993).

【29】Aimez V, Beauvais J, Beerens J et al. Low-energy ion-implantation-induced quantum-well intermixing. IEEE Journal of Selected Topics in Quantum Electronics. 8(4), 870-879(2002).

【30】Sun H D, Macaluso R, Calvez S et al. Quantum well intermixing in GaInNAs/GaAs structures. Journal of Applied Physics. 94(12), 7581-7585(2003).

【31】Lin T, Sun H, Zhang H Q et al. Present status of impurity free vacancy disordering research and application. Laser & Optoelectronics Progress. 52(3), (2015).
林涛, 孙航, 张浩卿 等. 无杂质空位诱导量子阱混杂研究及应用现状. 激光与光电子学进展. 52(3), (2015).

【32】Xia W, Ma D Y, Wang L et al. High power 650 nm red semiconductor laser with transparent window. Chinese Journal of Lasers. 34(9), 1182-1184(2007).
夏伟, 马德营, 王翎 等. 高透腔面大功率650 nm红光半导体激光器. 中国激光. 34(9), 1182-1184(2007).

【33】Lin T, Zhang H Q, Sun H et al. Impurity-free vacancy diffusion induces intermixing in GaInP/AlGaInP quantum wells using SiO2 encapsulation. Laser & Optoelectronics Progress. 52(2), (2015).
林涛, 张浩卿, 孙航 等. 基于SiO2膜的GaInP/AlGaInP无杂质空位扩散诱导量子阱混杂的研究. 激光与光电子学进展. 52(2), (2015).

【34】Kamiyama S, Mori Y, Takahashi Y et al. Improvement of catastrophic optical damage level of AlGaInP visible laser diodes by sulfur treatment. Applied Physics Letters. 58(23), 2595-2597(1991).

【35】Itaya K, Ishikawa M, Hatakoshi G et al. New window-structure InGaAlP visible light laser diodes by self-selective Zn diffusion-induced disordering. IEEE Journal of Quantum Electronics. 27(6), 1496-1500(1991).

【36】Shima A, Hironaka M, Ono K I et al. 650-nm-band high-power and highly reliable laser diodes with a window-mirror structure. Proceedings of SPIE. 3285, 30-38(1998).

【37】Onishi T, Imafuji O, Fukuhisa T et al. High power operation of real refractive index guided self-aligned AlGaInP laser diodes with window structure. Electronics Letters. 35(25), 2208-2209(1999).

【38】Xu Y, Cao Q, Zhu X P et al. High power AlGaInP laser diodes with zinc-diffused window mirror structure. Chinese Optics Letters. 2(11), 647-649(2004).

【39】Xu Y. High-power AlGaInP laser diodes with current-injection-free region near the laser facet. Optical Engineering. 45(3), (2006).

【40】Ma D Y, Li P X, Xia W et al. Mg doped p-cladding AlInP layer with window-structure high power 660 nm(3.7 W) AlGaInP broad area laser diodes. Journal of Synthetic Crystals. 38(3), 597-601(2009).
马德营, 李佩旭, 夏伟 等. Mg掺杂AlInP限制层窗口结构高功率(3.7 W)660 nm AlGaInP宽面半导体激光器. 人工晶体学报. 38(3), 597-601(2009).

【41】Wang H W, Zhang X, Li P X et al. Fabrication of 4.8 W high power CW operated red emitting laser diode. C]∥2010’ National Semiconductor Device Technology Symposium Proceedings. 87-89(2010).
王海卫, 张新, 李沛旭 等. 4.8 W连续输出大功率红光半导体激光器的研制. C]∥2010’全国半导体器件技术研讨会论文集. 87-89(2010).

【42】Yagi T, Shimada N, Nishida T et al. Highly-reliable operation of 638-nm broad stripe laser diode with high wall-plug efficiency for display applications. Proceedings of SPIE. 8640, (2013).

【43】Kuramoto K, Nishida T, Abe S et al. High-power operation of AlGaInP red laser diode for display applications. Proceedings of SPIE. 9348, (2015).

【44】Kanskar M and Martinsen R. High power diode lasers emitting from 639 nm to 690 nm. Proceedings of SPIE. 8965, (2014).

【45】Zhu Z, Xiao C F, Xia W et al. Design and fabrication of high power 640 nm red laser diodes. Laser & Optoelectronics Progress. 55(8), (2018).
朱振, 肖成峰, 夏伟 等. 大功率640 nm红光半导体激光器的设计及制备. 激光与光电子学进展. 55(8), (2018).

【46】Zheng X G, Li T, Lu P et al. Analysis of temperature characteristics of 980 nm semiconductor laser facet. Chinese Journal of Lasers. 40(11), (2013).
郑晓刚, 李特, 芦鹏 等. 980 nm半导体激光器腔面温度特性分析. 中国激光. 40(11), (2013).

【47】Qiao Z L, Zhang J, Lu P et al. Research of high brightness and high power broad area semiconductor lasers with nitrogen-hydrogen passivation. Laser & Optoelectronics Progress. 50(12), (2013).
乔忠良, 张晶, 芦鹏 等. 高亮度大功率宽条形半导体激光器腔面氮氢钝化研究. 激光与光电子学进展. 50(12), (2013).

【48】Liu B and Liu Y Y. High power 980 nm ridge waveguide semiconductor laser diode. Laser & Optoelectronics Progress. 52(9), (2015).
刘斌, 刘媛媛. 980 nm高功率脊型波导半导体激光器. 激光与光电子学进展. 52(9), (2015).

【49】Zhang S, Liu S J, Cui B F et al. A novel structure of non-injection regions of high-power laser diodes. Semiconductor Optoelectronics. 35(1), 26-29(2014).
张松, 刘素娟, 崔碧峰 等. 新型大功率LD非注入区窗口结构研究. 半导体光电. 35(1), 26-29(2014).

【50】Skidmore J A, Emanuel M A, Beach R J et al. High-power CW operation of AlGaInP laser-diode array at 640 nm. IEEE Photonics Technology Letters. 7(2), 133-135(1995).

【51】Unger A, Küster M, K?hler B et al. High-power fiber-coupled 100 W visible spectrum diode lasers for display applications. Proceedings of SPIE. 8605, (2013).

【52】Imanishi D. High-temperature operation of 640 nm wavelength high-power laser diode arrays. Japanese Journal of Applied Physics. 56(3), (2017).

【53】Chen B C, Chen K H, Yu J W et al. Analysis of junction temperatures for groups III-V semiconductor materials of light-emitting diodes. Optical and Quantum Electronics. 49(5), 183-187(2017).

【54】Ni Y X, Jing H Q, Kong J X et al. Thermal performance of high-power laser diodes packaged by SiC ceramic submount. Chinese Journal of Lasers. 45(1), (2018).
倪羽茜, 井红旗, 孔金霞 等. 碳化硅封装高功率半导体激光器散热性能研究. 中国激光. 45(1), (2018).

【55】Ma X Z, Huo J, Qu Y et al. Thermal-resistor analysis of the laser chips with different size in C-mount package. Chinese Journal of Luminescence. 32(2), 184-187(2011).
马祥柱, 霍晋, 曲轶 等. C-mount封装不同激光器芯片尺寸的热阻分析. 发光学报. 32(2), 184-187(2011).

【56】Onishi T, Inoue K, Onozawa K et al. High-power and high-temperature operation of Mg-doped AlGaInP-based red laser diodes. IEEE Journal of Quantum Electronics. 40(12), 1634-1638(2004).

【57】Schulz W M, Eichfelder M, Ro?bach R et al. InP/AlGaInP quantum dot laser emitting at 638 nm. Journal of Crystal Growth. 315(1), 123-126(2011).

【58】Zhang Y, Yang R X, An Z F et al. Influence of cavity length on single emitter semiconductor laser performance. Semiconductor Technology. 38(12), 914-918(2013).
张勇, 杨瑞霞, 安振峰 等. 腔长对高功率单管半导体激光器性能的影响. 半导体技术. 38(12), 914-918(2013).

【59】Kong Z Z, Cui B F, Huang X Z et al. Study on performance improvement of high power semiconductor lasers. Laser & Optoelectronics Progress. 54(7), (2017).
孔真真, 崔碧峰, 黄欣竹 等. 大功率半导体激光器性能改善的研究. 激光与光电子学进展. 54(7), (2017).

【60】Hamada H. Characterization of gallium indium phosphide and progress of aluminum galliumindium phosphide system quantum-well laser diode. Materials. 10(8), 875-879(2017).

【61】Lu B, Osinski J S, Vail E et al. High power 635 nm low-divergence ridge waveguide single mode lasers. Electronics Letters. 34(3), 272-273(1998).

【62】Cui B F, Li J J, Zou D S et al. Large optical cavity and small vertical divergence angle semiconductor lasers. Acta Physica Sinica. 53(7), 2150-2153(2004).
崔碧峰, 李建军, 邹德恕 等. 大光腔小垂直发散角InGaAs/GaAs/AlGaAs 半导体激光器. 物理学报. 53(7), 2150-2153(2004).

【63】Shimada N, Yukawa M, Shibata K et al. 640-nm laser diode for small laser display. Proceedings of SPIE. 7198, (2009).

【64】Hung C T, Huang S C and Lu T C. Optical mode modulation of AlGaInP multi quantum well laser diodes. Proceedings of SPIE. 8816, (2013).

【65】Zhu Z, Zhang X, Xiao C F et al. Fabrication of highly reliable watt-level 660 nm semiconductor lasers. Chinese Journal of Lasers. 45(5), (2018).
朱振, 张新, 肖成峰 等. 高可靠性瓦级660 nm半导体激光器研制. 中国激光. 45(5), (2018).

【66】Novikov I I, Karachinsky L Y, Maximov M V et al. Single mode CW operation of 658 nm AlGaInP lasers based on longitudinal photonic band gap crystal. Applied Physics Letters. 88(23), (2006).

【67】Maximov M V, Shernyakov Y M, Novikov I I et al. High-performance 640-nm-range GaInP-AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence. IEEE Journal of Quantum Electronics. 41(11), 1341-1348(2005).

【68】Zhou X Y, Zhao S Y, Ma X L et al. Low vertical devergence angle and high brightness photonic crystal semiconductor laser. Chinese Journal of Lasers. 44(2), (2017).
周旭彦, 赵少宇, 马晓龙 等. 低垂直发散角高亮度光子晶体半导体激光器. 中国激光. 44(2), (2017).

【69】Liu L, Qu H W, Liu Y et al. Design and analysis of laser diodes based on the longitudinal photonic band crystal concept for high power and narrow vertical divergence. IEEE Journal of Selected Topics in Quantum Electronics. 21(1), 440-446(2015).

【70】Bauduin B, Wallon J, Riviere D et al. Highlighting of two types of defects in 1300 nm PBC laser diodes. Quality and Reliability Engineering International. 12(4), 317-320(1996).

【71】Walpole J N, Kintzer E S, Chinn S R et al. High-power strained-layer InGaAs/AlGaAs tapered traveling wave amplifier. Applied Physics Letters. 61(7), 740-742(1992).

【72】Kintzer E S, Walpole J N, Chinn S R et al. High-power, strained-layer amplifiers and lasers with tapered gain regions. IEEE Photonics Technology Letters. 5(6), 605-608(1993).

【73】Sumpf B, Adamiec P, Zorn M et al. 650 nm tapered lasers with 1 W maximum output power and nearly diffraction limited beam quality at 500 mW. Proceedings of SPIE. 6876, (2008).

【74】Blume G, Kaspari C, Feise D et al. Tapered diode lasers and laser modules near 635 nm with efficient fiber coupling for flying-spot display applications. Optical Review. 19(6), 395-399(2012).

【75】Blume G, Schiemangk M, Pohl J et al. Narrow linewidth of 633-nm DBR ridge-waveguide lasers. IEEE Photonics Technology Letters. 25(6), 550-552(2013).

【76】Paschke K, Fiebig C, Blume G et al. Miniaturized highly brilliant diode laser modules for future display applications. Optical Review. 21(1), 75-78(2014).

【77】Soda H, Iga K I, Kitahara C et al. GaInAsP/InP surface emitting injection lasers. Japanese Journal of Applied Physics. 18(12), 2329-2330(1979).

【78】Li Y J, Zong N and Peng Q J. Characteristics and progress of vertical-cavity surface-emitting semiconductor lasers. Laser & Optoelectronics Progress. 55(5), (2018).
李玉娇, 宗楠, 彭钦军. 垂直腔面发射半导体激光器的特性及其研究现状. 激光与光电子学进展. 55(5), (2018).

【79】Tiberi M D and Kozlovsky V I. Electron-beam-pumped VCSEL light source for projection display. Proceedings of SPIE. 5740, 61-66(2005).

【80】Bondarev V Y, Kozlovsky V I, Krysa A B et al. E-beam pumped resonant periodic gain GaInP/AlGaInP VCSEL. Physica Status Solidi (C). 2(2), 931-934(2005).

【81】Seurin J F, Khalfin V, Xu G Y et al. High-power red VCSEL arrays. Proceedings of SPIE. 8639, (2013).

【82】-07-10)[2019-02-18]. https:∥laser.ofweek.com/2017-07/ART-240002-8110-30152537.html. (2017).
-07-10)[2019-02-18]. https:∥laser.ofweek.com/2017-07/ART-240002-8110-30152537.html. (2017).

【83】-04-20) [2019-02-18]. https:∥laser.ofweek.com/2018-04/ART-240002-8110-30223904.html. (2018).
-04-20)[2019-02-18]. https:∥laser.ofweek.com/2018-04/ART-240002-8110-30223904.html. (2018).

引用该论文

Xue Meng,Yongqiang Ning,Jianwei Zhang,Xing Zhang,Hangyu Peng,Li Qin,Lijun Wang. Research Progress of Red Semiconductor Laser Diodes for Laser Display[J]. Laser & Optoelectronics Progress, 2019, 56(18): 180001

孟雪,宁永强,张建伟,张星,彭航宇,秦莉,王立军. 面向激光显示的红光半导体激光器的研究进展[J]. 激光与光电子学进展, 2019, 56(18): 180001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF