首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170604--1)

新型中红外玻璃光纤及相应激光器研究进展

Progress on Novel Mid-Infrared Glass Fibers and Relative Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

中红外波段光纤激光光源在基础科学研究、光通信、生物医疗、环境监测以及国防安全领域有着重要应用。超连续谱(SC)激光光源和稀土离子掺杂光纤激光器是目前研究得较多的两类中红外波段激光光源。面向该类光源的应用需求,笔者研究组经过大量实验探索,筛选出一种具有较高稳定性和较高损伤阈值的氟碲酸盐玻璃光纤,并利用其作为非线性介质研制出了光谱范围覆盖0.6~5.4 μm宽带的SC激光光源和平均功率约为20 W、光谱范围覆盖1~4 μm的SC激光光源;制备出具有较强抗潮解能力的Ho 3+离子掺杂AlF3基玻璃光纤,并利用其作为增益介质,获得了波长约为2868 nm的激光输出;研制出具有较低声子能量的Ho 3+离子掺杂InF3基玻璃光纤,并利用其作为增益介质,获得了波长约为2875 nm的激光输出。总结了氟碲酸盐玻璃光纤、AlF3基玻璃光纤和InF3基玻璃光纤的特点及相应激光器的研究进展。

Abstract

Mid-infrared fiber lasers have important applications in fundamental researches, optical communications, biomedicine, environmental monitoring, and national defense security. Currently, researchers are mainly focused on two main mid-infrared fiber lasers, including supercontinuum (SC) lasers and rare-earth-ions-doped fiber lasers. For the application requirements, the authors developed a fluorotellurite glass fiber with relatively good stability and high damage threshold. By using the fluorotellurite glass fibers as the nonlinear media, broadband SC laser source from 0.6 to 5.4 μm was obtained in the experiments. Moreover, SC light source with an average power of about 20 W was also obtained, and the spectral range covered 1-4 μm wavelength. The authors fabricated Ho 3+-doped AlF3 based glass fibers with relatively good water resistance. By using the Ho 3+-doped AlF3 based glass fibers as gain media, the authors obtained about 2868 nm lasers. The authors also fabricated Ho 3+-doped InF3 based glass fibers with relatively low phonon energies. By using the Ho 3+-doped InF3 based glass fibers as gain media, the authors obtained about 2875 nm lasers. This paper mainly focuses on introducing the current progress on mid-infrared glass fibers, including the material characteristics of fluorotellurite glass fibers, AlF3 based glass fibers, InF3 based glass fibers, and relative lasers.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170604

所属栏目:功能光纤

基金项目:国家自然科学基金、吉林省重点科技研发项目、吉林省重大科技招标专项、装备预研教育部联合基金 、吉林省优秀青年人才基金、激光与物质相互作用国家重点实验室开放课题;

收稿日期:2019-05-28

修改稿日期:2019-07-09

网络出版日期:2019-09-01

作者单位    点击查看

贾志旭:吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012
姚传飞:吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012
贾世杰:吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012
王顺宾:吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012
李真睿:吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012
赵志鹏:吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012
秦伟平:吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012
秦冠仕:吉林大学电子科学与工程学院集成光电子学国家重点实验室, 吉林 长春 130012

联系人作者:秦冠仕(qings@jlu.edu.cn)

备注:国家自然科学基金、吉林省重点科技研发项目、吉林省重大科技招标专项、装备预研教育部联合基金 、吉林省优秀青年人才基金、激光与物质相互作用国家重点实验室开放课题;

【1】Diddams S A, Hollberg L and Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature. 445(7128), 627-630(2007).

【2】Mandon J, Guelachvili G and Picqué N. Fourier transform spectroscopy with a laser frequency comb. Nature Photonics. 3(2), 99-102(2009).

【3】Lin Z Y, Jia X Y, Wang C L et al. Ionization suppression of diatomic molecules in an intense midinfrared laser field. Physical Review Letters. 108(22), (2012).

【4】Xie K and Cao Y. Research on design and implementation of long distance infrared laser wireless communication system Digital Technology and Application. 2016(12), (0).
谢崑, 曹屿. 关于远距离红外激光无线通信系统设计与实现的研究 数字技术与应用. 2016(12), (0).

【5】Taccheo S. Fiber lasers for medical diagnostics and treatments: state of the art, challenges and future perspectives. Proceedings of SPIE. 10058, (2017).

【6】Qian L J. Development and integration of widly tunable mid-infrared femtosecond and narrow-band long-pulse laser devices. Infrared and Laser Engineering. 35(s3), (2006).
钱列加. 宽调谐中红外飞秒及窄带长脉冲激光器件的研制和集成. 红外与激光工程. 35(s3), (2006).

【7】Deng Y, Zhu Q H, Zeng X M et al. The generation and recent progress of ultrashort mid-infrared pulse. Laser & Optoelectronics Progress. 43(8), 21-26(2006).
邓颖, 朱启华, 曾小明 等. 超短中红外激光脉冲的产生及其发展状况. 激光与光电子学进展. 43(8), 21-26(2006).

【8】Chen L Z and Wen S C. Recent advances and methods of optical parametric generation and amplification for tunable ultra-short mid-infrared pulse. Laser & Optoelectronics Progress. 48(8), (2011).
陈列尊, 文双春. 可调谐超短中红外激光脉冲的参变产生与放大及其最新进展. 激光与光电子学进展. 48(8), (2011).

【9】Yu Z J, Han H N and Wei Z Y. Progress in dual-comb spectroscopy. Physics. 43(7), 460-467(2014).
于子蛟, 韩海年, 魏志义. 双光梳光谱学研究进展. 物理. 43(7), 460-467(2014).

【10】Meng D D, Zhang H B, Li M S et al. Laser technology for direct IR countermeasure system. Infrared and Laser Engineering. 47(11), (2018).
孟冬冬, 张鸿博, 李明山 等. 定向红外对抗系统中的激光器技术. 红外与激光工程. 47(11), (2018).

【11】Li S S and Yan X S. Research on mid-infrared laser source in laser countermeasure system and key technology. Electro-Optic Technology Application. 33(5), 19-23(2018).
李森森, 闫秀生. 激光对抗系统中的中红外激光源及其关键技术. 光电技术应用. 33(5), 19-23(2018).

【12】Budni P A, Pomeranz L A, Lemons M L et al. Efficient mid-infrared laser using 1.9-μm-pumped Ho∶YAG and ZnGeP2 optical parametric oscillators. Journal of the Optical Society of America B. 17(5), 723-728(2000).

【13】Gmachl C, Capasso F, Sivco D L et al. Recent progress in quantum cascade lasers and applications. Reports on Progress in Physics. 64(11), 1533-1601(2001).

【14】Perram G P, Marciniak M A and Goda M. High energy laser weapons: technology overview. Proceedings of SPIE. 5414, 1-25(2004).

【15】Swiderski J. High-power mid-infrared supercontinuum sources:current status and future perspectives. Progress in Quantum Electronics. 38(5), 189-235(2014).

【16】Jackson S D. Towards high-power mid-infrared emission from a fibre laser. Nature Photonics. 6(7), 423-431(2012).

【17】Petersen C R, M?ller U, Kubat I et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photonics. 8(11), 830-834(2014).

【18】Cheng T L, Nagasaka K, Tuan T H et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber. Optics Letters. 41(9), 2117-2120(2016).

【19】Zhao Z M, Wu B, Wang X S et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber. Laser & Photonics Reviews. 11(2), (2017).

【20】Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers. Optics Letters. 43(18), 4542-4545(2018).

【21】Wang Y Y, Dai S X, Li G T et al. 1.4-7.2 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime. Optics Letters. 42(17), 3458-3461(2017).

【22】Qin G S, Yan X, Kito C et al. Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber. Applied Physics Letters. 95(16), (2009).

【23】Xia C N, Kumar M, Kulkarni O P et al. Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping. Optics Letters. 31(17), 2553-2555(2006).

【24】Xia C N, Kumar M, Cheng M Y et al. Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power. Optics Express. 15(3), 865-871(2007).

【25】Xia C N, Xu Z, Islam M N et al. 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation. IEEE Journal of Selected Topics in Quantum Electronics. 15(2), 422-434(2009).

【26】Yang W Q, Zhang B, Xue G H et al. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system. Optics Letters. 39(7), 1849-1852(2014).

【27】Liu K, Liu J, Shi H X et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power. Optics Express. 22(20), 24384-24391(2014).

【28】Liu K, Liu J, Shi H X et al. 24.3 W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier. [C]//Advanced Solid State Lasers, November 16-21, 2014, Shanghai, China. Washington, D.C.: OSA. AM3A, (2014).

【29】Jia Z X, Yao C F, Li Z R et al. Progress on novel high power mid-infrared fiber laser materials and supercontinuum laser. Chinese Journal of Lasers. 46(5), (2019).
贾志旭, 姚传飞, 李真睿 等. 新型高功率中红外光纤激光材料与超连续谱激光研究进展. 中国激光. 46(5), (2019).

【30】Domachuk P, Wolchover N A, Cronin-Golomb M et al. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Optics Express. 16(10), 7161-7168(2008).

【31】Delmonte T and Watson M A. O''''Driscoll E J, et al. Generation of Mid-IR continuum using tellurite microstructured fiber. [C]//2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, May 21-26, 2006, Long Beach, CA, USA. New York: IEEE. CTuA4, (2006).

【32】Thapa R, Rhonehouse D, Nguyen D et al. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm. Proceedings of SPIE. 8898, (2013).

【33】Shi H X, Feng X, Tan F Z et al. Multi-watt mid-infrared supercontinuum generated from a dehydrated large-core tellurite glass fiber. Optical Materials Express. 6(12), 3967-3976(2016).

【34】Jia Z X, Yao C F, Jia S J et al. 4.5 W supercontinuum generation from 1017 to 3438 nm in an all-solid fluorotellurite fiber. Applied Physics Letters. 110(26), (2017).

【35】Yao C F, Jia Z X, Li Z R et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber. Optica. 5(10), 1264-1270(2018).

【36】Ehrenreich T, Leveille R, Majid I et al. 1-kW, all-glass Tm: fiber laser. Proceedings of SPIE. 7580, (2010).

【37】Woodward R I, Majewski M R, Bharathan G et al. Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency. Optics Letters. 43(7), 1471-1474(2018).

【38】Maes F, Fortin V, Bernier M et al. 5.6 W monolithic fiber laser at 3.55 μm. Optics Letters. 42(11), 2054-2057(2017).

【39】Maes F, Fortin V, Poulain S et al. Room-temperature fiber laser at 3.92 μm. Optica. 5(7), 761-764(2018).

【40】Henderson-Sapir O, Jackson S D and Ottaway D J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser. Optics Letters. 41(7), 1676-1679(2016).

【41】Schneide J, Carbonnier C and Unrau U B. Characterization of a Ho 3+-doped fluoride fiber laser with a 3.9-μm emission wavelength . Applied Optics. 36(33), 8595-8600(1997).

【42】Sanghera J S, Aggarwal I D, Busse L E et al. Chalcogenide optical fibers target mid-IR applications. Laser Focus World. 41(4), 83-87(2005).

【43】Harbold J M, Ilday F O, Wise F W et al. Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching. IEEE Photonics Technology Letters. 14(6), 822-824(2002).

【44】Slusher R E, Lenz G, Hodelin J et al. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers. Journal of the Optical Society of America B. 21(6), 1146-1155(2004).

【45】Feng X, Mairaj A K, Hewak D W et al. Nonsilica glasses for holey fibers. Journal of Lightwave Technology. 23(6), 2046-2054(2005).

【46】Wang J S, Vogel E M and Snitzer E. Tellurite glass: a new candidate for fiber devices. Optical Materials. 3(3), 187-203(1994).

【47】Ghosh G. Sellmeier coefficients and chromatic dispersions for some tellurite glasses. Journal of the American Ceramic Society. 78(10), 2828-2830(1995).

【48】Anashkina E A, Dorofeev V V, Koltashev V V et al. Development of Er 3+-doped high-purity tellurite glass fibers for gain-switched laser operation at 2.7 μm . Optical Materials Express. 7(12), 4337-4351(2017).

【49】Schweizer T, Samson B N, Hector J R et al. Infrared emission from holmium doped gallium lanthanum sulphide glass. Infrared Physics & Technology. 40(4), 329-335(1999).

【50】Moizan V, Nazabal V, Troles J et al. Er 3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy . Optical Materials. 31(1), 39-46(2008).

【51】Yang A P, Qiu J H, Zhang M J et al. Mid-infrared luminescence of Dy 3+ ions in modified Ga-Sb-S chalcogenide glasses and fibers . Journal of Alloys and Compounds. 695, 1237-1242(2017).

【52】Cui J, Xiao X S, Xu Y T et al. Mid-infrared emissions of Dy 3+ doped Ga-As-S chalcogenide glasses and fibers and their potential for a 4.2 μm fiber laser . Optical Materials Express. 8(8), 2089-2102(2018).

【53】Yu X Y, Dai S X, Zhou Y X et al. Theoretical studies on mid-infrared gain characteristics of erbium-doped chalcogenide glass fibers. Chinese Journal of Lasers. 39(1), (2012).
於杏燕, 戴世勋, 周亚训 等. 掺铒硫系玻璃光纤的中红外增益特性模拟研究. 中国激光. 39(1), (2012).

【54】Jia S J, Jia Z X, Yao C F et al. Ho 3+ doped fluoroaluminate glass fibers for 2.9 μm lasing . Laser Physics. 28(1), (2018).

【55】Jia S J, Jia Z X, Yao C F et al. 2875 nm lasing from Ho 3+-doped fluoroindate glass fibers . IEEE Photonics Technology Letters. 30(4), 323-326(2018).

【56】Muravyev S V, Anashkina E A, Andrianov A V et al. Dual-band Tm 3+-doped tellurite fiber amplifier and laser at 1.9 μm and 2.3 μm . Scientific Reports. 8, (2018).

【57】Jia Z X, Yao C F, Jia S J et al. Supercontinuum generation covering the entire 0.4-5 μm transmission window in a tapered ultra-high numerical aperture all-solid fluorotellurite fiber. Laser Physics Letters. 15(2), (2018).

【58】Dudley J M, Genty G and Coen S. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics. 78(4), 1135-1184(2006).

【59】Savelii I, Desevedavy F, Jules J C et al. Management of OH absorption in tellurite optical fibers and related supercontinuum generation. Optical Materials. 35(8), 1595-1599(2013).

【60】Penilla E H. Devia-Cruz L F, Duarte M A, et al. Gain in polycrystalline Nd-doped alumina: leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials. Light: Science & Applications. 7, (2018).

【61】Campbell J H. Suratwala T I. Nd-doped phosphate glasses for high-energy/high-peak-power lasers. Journal of Non-Crystalline Solids. 263/264, 318-341(2000).

【62】Huang F F, Ma Y Y, Li W W et al. 2.7 μm emission of high thermally and chemically durable glasses based on AlF3. Scientific Reports. 4, (2014).

【63】Chen H Y and Gan F X. Vibrational spectra and structure of AlF3-YF3 fluoride glasses. Journal of Non-Crystalline Solids. 112(1/2/3), 272-276(1989).

【64】Li J F, Luo H Y, Liu Y et al. Modeling and optimization of cascaded erbium and holmium doped fluoride fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics. 20(5), (2014).

【65】Li J F, Hudson D D and Jackson S D. High-power diode-pumped fiber laser operating at 3 μm. Optics Letters. 36(18), 3642-3644(2011).

【66】Saad M, Pafchek R, Foy P et al. Indium fluoride glass fibers for mid-infrared applications. [C]//Workshop on Specialty Optical Fibers and Their Applications, November 4-6, 2015, Hong Kong, China. Washington, D.C.: OSA. WW4A, (2015).

【67】Almeida R M, Pereira J C, Messaddeq Y et al. Vibrational spectra and structure of fluoroindate glasses. Journal of Non-Crystalline Solids. 161, 105-108(1993).

【68】Michalska M, Mikolajczyk J, Wojtas J et al. Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses. Scientific Reports. 6, (2016).

【69】Majewski M R, Woodward R I, Carreé J Y et al. Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber. Optics Letters. 43(8), 1926-1929(2018).

引用该论文

Zhixu Jia, Chuanfei Yao, Shijie Jia, Shunbin Wang, Zhenrui Li, Zhipeng Zhao, Weiping Qin, Guanshi Qin. Progress on Novel Mid-Infrared Glass Fibers and Relative Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170604

贾志旭, 姚传飞, 贾世杰, 王顺宾, 李真睿, 赵志鹏, 秦伟平, 秦冠仕. 新型中红外玻璃光纤及相应激光器研究进展[J]. 激光与光电子学进展, 2019, 56(17): 170604

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF