首页 > 论文 > 中国激光 > 46卷 > 9期(pp:903002--1)

大口径钛宝石晶体全频域透射波前误差高精度加工工艺研究

High-Precision Transmission-Wavefront-Processing Technology of Large Aperture Ti∶sapphire Crystal at Full Spatial Frequency

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

钛宝石晶体是超强、超短脉冲激光振荡源广泛采用的工作物质,其口径大小和表面全频域波面误差决定了超短、超强激光系统的输出能量和光束质量,然而由于大口径钛宝石晶体光学均匀性差及硬度高的特点,其实现高精度透射波前和超光滑表面加工很具挑战性。针对这一问题,设计了线偏振干涉光源检测方法,解决了钛宝石晶体双折射导致的透射波前检测干涉条纹无法解析的问题;基于对钛宝石晶体材料光学均匀性的检测分析,发展了基于单轴机的透射波前快速抛光收敛工艺;通过正交实验和灰关联分析法,利用小磨头抛光工艺实现了钛宝石晶体高精度透射波前低频误差和超光滑表面高频误差的加工;为改善中频误差,发展了基于硅溶胶抛光液的小磨头中频误差光顺工艺。实验结果表明:多手段组合的加工工艺可以实现大口径钛宝石晶体全频域透射波前误差的有效控制,针对直径为120 mm的钛宝石样件,透射波前峰谷值可达0.283λ(λ=632.8 nm),中频功率谱密度无明显的特定频段调制误差,高频表面粗糙度Rq约为0.262 nm,可达到超光滑量级。

Abstract

Ti∶sapphire crystal is a widely-used working material for ultra-short and ultra-intense laser oscillator. Its aperture and surface full-spatial-frequency wavefront errors determine the output energy and beam quality of ultra-short and ultra-intense laser system. However, owing to the extreme difficulty in obtaining good optical homogeneity and high Mohr hardness in the Ti∶sapphire crystal, it remains a great challenge to fabricate a large-aperture Ti∶sapphire with a high-precision transmission wavefront and super-smooth surface. High-precision transmission-wavefront measurements of the Ti∶sapphire crystal are realized through the design of a linear polarization interference detection method to match the crystal axis, which solves the problem that the interference fringes of transmission-wavefront measurements cannot usually be resolved owing to the birefringence caused by the structural characteristics of the Ti∶sapphire crystal. Based on the measurements and analysis on the optical homogeneity of the Ti∶sapphire crystal, a fast polishing convergence process for the transmission wavefront is developed using an uniaxial machine. In order to realize the process for transmission wavefront with high accuracy and low frequency error and the process for super-smooth surface with high frequency error, orthogonal experiments combined with the grey relational analysis method are used to optimize the processing parameters of a computer-controlled small-grinding-head polishing. A small-grinding-head smoothing process using silica sol polishing fluid is developed to reduce the mid-spatial-frequency errors. Experimental results show that the transmission-wavefront errors of the large-aperture Ti∶sapphire crystal at full spatial frequency can be effectively controlled by using multi-way processing technologies. For a large-aperture Ti∶sapphire crystal with a diameter of 120 mm, the peak-valley value of the transmission wavefront can reach 0.283λ (λ=632.8 nm), the power spectral density of intermediate frequency shows that there is no obvious error modulation at special frequency. A super-smooth surface is realized with a high-frequency roughness Rq of approximately 0.262 nm.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0903002

所属栏目:材料与薄膜

基金项目:国家自然科学基金;

收稿日期:2019-03-11

修改稿日期:2019-05-13

网络出版日期:2019-09-01

作者单位    点击查看

金寿平:长春理工大学光电工程学院, 吉林 长春 130022
付跃刚:长春理工大学光电工程学院, 吉林 长春 130022
金钰皓:太原理工大学, 山西 太原 030024
郝志旭:长春理工大学光电工程学院, 吉林 长春 130022

联系人作者:付跃刚(fuyg@cust.edu.cn)

备注:国家自然科学基金;

【1】Huang C P, Nathel H, Asaki M T et al. 17-fs pulses from a self-mode-locked Ti∶sapphire laser. Optics Letters. 17(18), 1289-1291(1992).

【2】Zhang B H, Xu J, Yang Q H et al. New progress of ultrafast and ultraintense lasers based on Ti∶sapphire. Laser & Optoelectronics Progress. 50(4), (2013).
张宝辉, 徐军, 杨秋红 等. 基于钛宝石的超快超强激光新进展. 激光与光电子学进展. 50(4), (2013).

【3】Nisoli M, de Silvestri S, Svelto O et al. . Compression of high-energy laser pulses below 5 fs. Optics Letters. 22(8), 522-524(1997).

【4】Liu J, Wang Y Z, Zhao R R et al. Low vibration and high dispersion mirror pair in femtosecond pulsed Ti∶sapphire laser. Chinese Journal of Lasers. 45(10), (2018).
刘加, 王胭脂, 赵睿睿 等. 飞秒脉冲钛宝石激光器中的低振荡高色散镜对. 中国激光. 45(10), (2018).

【5】Zhang L P, Yin G L, Li F Q et al. All-solid-state tunable Ti∶sapphire laser with high-power and single-frequency at 900 nm. Chinese Journal of Lasers. 44(12), (2017).
张连平, 殷国玲, 李凤琴 等. 900 nm波段的全固态高功率单频可调谐钛宝石激光器. 中国激光. 44(12), (2017).

【6】Morgner U, K?rtner F X, Cho S H et al. Sub-two-cycle pulses from a Kerr-lensmode-locked Ti∶sapphire laser. Optics Letters. 24(6), 411-413(1999).

【7】Su J, Jin P X, Wei Y X et al. Automatically and broadly tunable all-solid-state continuous single-frequency Ti∶sapphire laser. Chinese Journal of Lasers. 44(7), (2017).
苏静, 靳丕铦, 卫毅笑 等. 自动宽调谐的全固态连续单频钛宝石激光器. 中国激光. 44(7), (2017).

【8】Liao R, Wen J H, Liu Z G et al. Characterization of sub-10-fs KLM Ti∶sapphire laser. Chinese Journal of Lasers. 29(s1), 53-55(2002).
廖睿, 文锦辉, 刘智刚 等. 宽频带亚10 fs钛宝石激光器的特性研究. 中国激光. 29(s1), 53-55(2002).

【9】Schaffers K I, Bayramian A J, Davis P J et al. Improved optical quality for Ti∶sapphire using MRF. [C]∥Advanced Solid-State Photonics 2008, January 27-30, 2008, Nara, Japan. Washington, D.C.: OSA. WE15, (2008).

【10】Baisden P A, Atherton L J, Hawley R A et al. Large optics for the national ignition facility. Fusion Science and Technology. 69(1), 295-351(2016).

【11】Liao W L, Dai Y F, Nie X Q et al. Rapid fabrication technique for nanometer-precision aspherical surfaces. Applied Optics. 54(7), 1629-1638(2015).

【12】Wan L L, Dai P, Liu Z J et al. Research progress in ultra-precision lapping process of sapphire. Ordnance Material Science and Engineering. 41(1), 115-123(2018).
万林林, 戴鹏, 刘志坚 等. 蓝宝石超精密研磨加工研究进展. 兵器材料科学与工程. 41(1), 115-123(2018).

【13】Geng Q D and Li C Y. Influence of ultrasonic polishing and magnetic abrasive finishing processing parameters on surface roughness of sapphire. Surface Technology. 47(7), 104-111(2018).
耿其东, 李春燕. 超声磁力研磨加工参数对蓝宝石表面粗糙度的影响. 表面技术. 47(7), 104-111(2018).

【14】Zhang S K, Wang Q Y and Peng H S. Ti∶sapphire and ultrashort pulse lasers. High Power Laser and Particle Beams. 9(1), 149-156(1997).
张树葵, 王清月, 彭翰生. 掺钛蓝宝石与超短脉冲激光. 强激光与粒子束. 9(1), 149-156(1997).

【15】Lan X J. Laser technology. 138-140(2000).
蓝信钜. 激光技术. 138-140(2000).

【16】Wang J C, Deng Q F, Zhou Z Z et al. Review of the methods of surface damage inspection for grinded sapphire substrate. Superhard Material Engineering. 23(5), 51-55(2011).
王吉翠, 邓乾发, 周兆忠 等. 蓝宝石晶片加工表面质量检测方法综述. 超硬材料工程. 23(5), 51-55(2011).

【17】Xu Y C, Lu J and Xu X P. Analysis of power spectrum and fractal characteristics of the surface topography of sapphire. Superhard Material Engineering. 29(2), 56-60(2017).
许永超, 陆静, 徐西鹏. 蓝宝石表面形貌的功率谱与分形特征分析. 超硬材料工程. 29(2), 56-60(2017).

【18】Yang X D. Study on pulse tuned Ti∶sapphire laser. Harbin: Harbin Institute of Technology. (2006).
杨旭东. 脉冲可调谐掺钛蓝宝石激光器的研究. 哈尔滨: 哈尔滨工业大学. (2006).

【19】Guo P J, Yu J C, Ding Z Z et al. Absolute testing method of the homogeneity of optical glass. Laser Journal. 24(3), 26-27(2003).
郭培基, 余景池, 丁泽钊 等. 光学玻璃光学均匀性的绝对测量技术. 激光杂志. 24(3), 26-27(2003).

【20】de Vany A S. Using a Murty interferometer for testing the homogeneity of test samples of optical materials. Applied Optics. 10(6), 1459-1460(1971).

【21】Ai C and Wyant J C. Measurement of the inhomogeneity of a window. Optical Engineering. 30(9), 1399-1405(1991).

【22】Yao C, Wang H, Zhang Z et al. Wavefront error modeling and control method for large aperture optical unit in high power solid-state laser. Acta Optica Sinica. 37(7), (2017).
姚超, 王辉, 张政 等. 高功率固体激光器中大口径光学器件波前误差的建模及控制方法. 光学学报. 37(7), (2017).

【23】Aikens D M, Wolfe C R and Lawson J K. Use of power spectral density (PSD) functions in specifying optics for the National Ignition Facility. Proceedings of SPIE. 2576, 281-292(1995).

【24】Nie X Q, Li S Y, Shi F et al. Generalized numerical pressure distribution model for smoothing polishing of irregular midspatial frequency errors. Applied Optics. 53(6), 1020-1027(2014).

【25】Shu Y, Nie X, Shi F et al. Smoothing evolution model for computer controlled optical surfacing. Journal of Optical Technology. 81(3), 164-167(2014).

引用该论文

shouping Jin,Yuegang Fu,Yuhao Jin,Zhixu Hao. High-Precision Transmission-Wavefront-Processing Technology of Large Aperture Ti∶sapphire Crystal at Full Spatial Frequency[J]. Chinese Journal of Lasers, 2019, 46(9): 0903002

金寿平,付跃刚,金钰皓,郝志旭. 大口径钛宝石晶体全频域透射波前误差高精度加工工艺研究[J]. 中国激光, 2019, 46(9): 0903002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF