首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170615--1)

微结构和集成式功能光纤的制备和潜在应用

Preparation and Potential Applications of Microstructured and Integrated Functional Optical Fibers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光纤作为光信息和光能量的传输元器件已成为基础建设不可或缺的组成部分。针对功能光纤进行概括性介绍。着重介绍了微结构光纤的导光机理以及制备方案。微结构光纤由于其实现了灵活的预制棒制备方式、空芯传输以及理论上的超低衰耗,广泛地应用于光电传感和激光器应用。未来光纤发展的趋势将是光、电功能集成于一根光纤中,详细介绍了纳米机械光纤的制备和潜在应用,为全光器件和光集成技术发展提供重要的研究方向。

Abstract

Recently, fiber optics have become indispensable infrastructural components for the transmission of optical signals and energy. We provide an overview of functional fibers. The light guiding mechanism and preparation scheme of microstructure optical fibers (MOFs) are introduced. The usage of MOF has emerged in optoelectronic sensing and laser applications because of its flexible preform preparation, hollow core transmission ability, and ultralow theoretical attenuation. Because the development of optical fibers is progressing toward the integration of multi-functional units into single fibers, the preparation and potential applications of a nanomechanical optical fiber are introduced in detail. This new type of optical fiber represents a crucial research direction for the development of all-optical devices and optical integration technologies.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170615

所属栏目:功能光纤

收稿日期:2019-05-27

修改稿日期:2019-07-02

网络出版日期:2019-09-01

作者单位    点击查看

廉正刚:武汉长盈通光电技术有限公司, 湖北 武汉 430205
陈翔:武汉长盈通光电技术有限公司, 湖北 武汉 430205
王鑫:北京交通大学电子信息工程学院, 北京 100044
娄淑琴:北京交通大学电子信息工程学院, 北京 100044
郭臻:武汉长盈通光电技术有限公司, 湖北 武汉 430205
皮亚斌:武汉长盈通光电技术有限公司, 湖北 武汉 430205

联系人作者:廉正刚(zg_lian@126.com)

【1】Kao K C and Hockham G A. Dielectric fibre surface waveguide for optical frequencies. ∥Brown J. Electromagnetic wave theory. Netherlands: Elsevier. 441-444(1967).

【2】Miya T, Terunuma Y, Hosaka T et al. Ultimate low-loss single-mode fibre at 1.55 μm. Electronics Letters. 15(4), 106-108(1979).

【3】Mears R J, Reekie L, Jauncey I M et al. Low-noise erbium-doped fibre amplifier operating at 1.54 μm. Electronics Letters. 23(19), 1026-1028(1987).

【4】Knight J C and Birks T A. Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters. 21(19), 1547-1549(1996).

【5】Kolyadin A N, Kosolapov A F, Pryamikov A D et al. Light transmission in negative curvature hollow core fiber in extremely high material loss region. Optics Express. 21(8), 9514-9519(2013).

【6】Joannopoulos J D, Johnson S G, Winn J N et al. Photonic crystals: molding the flow of light. (2011).

【7】Yablonovitch E. Photonic crystals: semiconductors of light. Scientific American. 285(6), 46-55(2001).

【8】Mangan B J, Farr L, Langford A et al. Low loss (1.7 dB/km) hollow core photonic bandgap fiber. [C]∥Optical Fiber Communication Conference 2004, February 23-27, 2004, Los Angeles, California, United States. Washington, DC: Optical Society of America. PD24, (2004).

【9】Duguay M A, Kokubun Y, Koch T L et al. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Applied Physics Letters. 49(1), 13-15(1986).

【10】Argyros A. Leon-Saval S G, Pla J, et al. Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres. Optics Express. 16(8), 5642-5648(2008).

【11】Litchinitser N M, Abeeluck A K, Headley C et al. Antiresonant reflecting photonic crystal optical waveguides. Optics Letters. 27(18), 1592-1594(2002).

【12】Yu F, Wadsworth W J and Knight J C. Low loss silica hollow core fibers for 3-4 μm spectral region. Optics Express. 20(10), 11153-11158(2012).

【13】Gao S F, Wang Y Y, Liu X L et al. Low bending loss nodeless hollow-core anti-resonant fiber. [C]∥Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California, United States. Washington, DC: Optical Society of America. SW1I, (2016).

【14】Macchesney J B and resulting product: US4909816[P/OL]. -03-20[2019-07-15]. https:∥xs.zb-welding.com/patent/US4909816A/en. (1990).

【15】Li M J, Chen X, Liu A P et al. Limit of effective area for single-mode operation in step-index large mode area laser fibers. Journal of Lightwave Technology. 27(15), 3010-3016(2009).

【16】Limpert J, Liem A, Reich M et al. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier. Optics Express. 12(7), 1313-1319(2004).

【17】Eidam T, Rothhardt J, Stutzki F et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power. Optics Express. 19(1), 255-260(2011).

【18】Stutzki F, Jansen F, Liem A et al. 26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality. Optics Letters. 37(6), 1073-1075(2012).

【19】Dong L, Peng X and Li J. Leakage channel optical fibers with large effective area. Journal of the Optical Society of America B. 24(8), 1689-1697(2007).

【20】Dong L. McKay H A, Fu L B, et al. Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding. Optics Express. 17(11), 8962-8969(2009).

【21】Dasgupta S, Hayes J R and Richardson D J. Leakage channel fibers with microstuctured cladding elements: a unique LMA platform. Optics Express. 22(7), 8574-8584(2014).

【22】Jain D, Baskiotis C and Sahu J K. Mode area scaling with multi-trench rod-type fibers. Optics Express. 21(2), 1448-1455(2013).

【23】Jain D, Jung Y M, Kim J et al. Robust single-mode all-solid multi-trench fiber with large effective mode area. Optics Letters. 39(17), 5200-5203(2014).

【24】Jain D and Baskiotis C. May-Smith T C, et al. Large mode area multi-trench fiber with delocalization of higher order modes. IEEE Journal of Selected Topics in Quantum Electronics. 20(5), 242-250(2014).

【25】Napierala M, Beres-Pawlik E, Nasilowski T et al. Photonic crystal fiber with large mode area and characteristic bending properties. IEEE Photonics Technology Letters. 24(16), 1409-1411(2012).

【26】Wang X, Lou S Q and Lu W L. Novel bend-resistant large-mode-area photonic crystal fiber with a triangular-core. Acta Physica Sinica. 62(18), (2013).
王鑫, 娄淑琴, 鹿文亮. 新型三角芯抗弯曲大模场面积光子晶体光纤. 物理学报. 62(18), (2013).

【27】Chen M Y and Zhang Y K. Bend insensitive design of large-mode-area microstructured optical fibers. Journal of Lightwave Technology. 29(15), 2216-2222(2011).

【28】Chen M Y, Li Y R, Zhou J et al. Design of asymmetric large-mode area optical fiber with low-bending loss. Journal of Lightwave Technology. 31(3), 476-481(2013).

【29】Wang X, Lou S Q and Lu W L. Rectangle lattice large mode area photonic crystal fiber for 2 m compact high-power fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics. 20(5), (2014).

【30】Wang X, Lou S Q and Lu W L. Bending orientation insensitive large mode area photonic crystal fiber with triangular core. IEEE Photonics Journal. 5(4), (2013).

【31】Shephard J D. Jones J D C, Hand D P, et al. High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers. Optics Express. 12(4), 717-723(2004).

【32】Ramachandran S, Yan M F, Jasapara J et al. High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber. Optics Letters. 30(23), 3225-3227(2005).

【33】Jones D C, Bennett C R, Smith M A et al. High-power beam transport through a hollow-core photonic bandgap fiber. Optics Letters. 39(11), 3122-3125(2014).

【34】Michieletto M, Lyngs? J K, Jakobsen C et al. Hollow-core fibers for high power pulse delivery. Optics Express. 24(7), 7103-7119(2016).

【35】Wang X, Lou S Q, Sheng X Z et al. Simultaneous measurement of torsion, strain and temperature using a side-leakage photonic crystal fiber loop mirror. Infrared Physics & Technology. 76, 603-607(2016).

【36】Austin E, van Brakel A, Petrovich M N et al. . Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell. Sensors and Actuators B: Chemical. 139(1), 30-34(2009).

【37】Petrovich M N, Wheeler N V, Heidt A M et al. High sensitivity gas detection using hollow core photonic bandgap fibres designed for mid-IR operation. [C]∥SENSORS, 2014 IEEE, November 2-5, 2014, Valencia, Spain. New York: IEEE. 14833726, (2014).

【38】Passaro D, Foroni M, Poli F et al. All-silica hollow-core microstructured Bragg fibers for biosensor application. IEEE Sensors Journal. 8(7), 1280-1286(2008).

【39】Wang Y M, Zhang X, Ren X M et al. Design and analysis of a dispersion flattened and highly nonlinear photonic crystal fiber with ultralow confinement loss. Applied Optics. 49(3), 292-297(2010).

【40】Ermolov A, Mak K F, Frosz M H et al. Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber. Physical Review A. 92(3), (2015).

【41】Poletti F, Wheeler N V, Petrovich M N et al. Towards high-capacity fibre-optic communications at the speed of light in vacuum. Nature Photonics. 7(4), 279-284(2013).

【42】Jung Y M, Sleiffer V, Baddela N et al. First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing. [C]∥Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, March 17-21, 2013, Anaheim, CA, United States. Washington, DC: Optical Society of America. PDP5A, (2013).

【43】Chen Y, Liu Z, Sandoghchi S R et al. Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission. [C]∥Optical Fiber Communication Conference Post Deadline Papers, March 22-26, 2015, Los Angeles, California, United States. Washington, DC: Optical Society of America. Th5A, (2015).

【44】Li X Y, Xu Z L, Yang H R et al. Analysis of thermal properties in a polarization-maintaining air-core photonic bandgap fiber. Chinese Journal of Lasers. 43(4), (2016).
李绪友, 许振龙, 杨汉瑞 等. 保偏空芯带隙光子晶体光纤温度特性研究. 中国激光. 43(4), (2016).

【45】Qiao W, Gao S C, Lei T et al. Transmission of orbital angular momentum modes in grapefruit-type microstructure fiber. Chinese Journal of Lasers. 44(4), (2017).
乔文, 高社成, 雷霆 等. 轨道角动量模式在柚子型微结构光纤中的传输. 中国激光. 44(4), (2017).

【46】Fan Z K, Zhang Z C, Wang B Z et al. Research progress of photonic crystal fiber refractive index sensors based on surface plasmon resonance effect. Laser & Optoelectronics Progress. 56(7), (2019).
范振凯, 张子超, 王保柱 等. 基于表面等离子体共振效应的光子晶体光纤折射率传感器的研究进展. 激光与光电子学进展. 56(7), (2019).

【47】Hayashi T, Taru T, Shimakawa O et al. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber. Optics Express. 19(17), 16576-16592(2011).

【48】Winzer P J. Making spatial multiplexing a reality. Nature Photonics. 8(5), 345-348(2014).

【49】Butsch A, Kang M S, Euser T G et al. Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber. Physical Review Letters. 109(18), (2012).

【50】Lian Z G, Horak P, Feng X et al. Nanomechanical optical fiber. Optics Express. 20(28), 29386-29394(2012).

【51】Lian Z G, Li Q Q, Furniss D et al. Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions. IEEE Photonics Technology Letters. 21(24), 1804-1806(2009).

【52】Price J H V, Monro T M, Ebendorff-Heidepriem H et al. . Mid-IR supercontinuum generation from nonsilica microstructured optical fibers. IEEE Journal of Selected Topics in Quantum Electronics. 13(3), 738-749(2007).

【53】-07-18[2019-07-15]. https:∥xs.zb-welding.com/patent/US7077900B2/en. (2006).

【54】Shi J D, Feng X, Lian Z G et al. Fabrication of multiple parallel suspended-core optical fibers by sheet-stacking. Optical Fiber Technology. 20(4), 395-402(2014).

【55】Horak P, Stewart W and Loh W H. Continuously tunable optical buffer with a dual silicon waveguide design. Optics Express. 19(13), 12456-12461(2011).

【56】Podoliak N, Lian Z G, Loh W H et al. Design of dual-core optical fibers with NEMS functionality. Optics Express. 22(1), 1065-1076(2014).

【57】Lian Z G, Segura M, Podoliak N et al. Nanomechanical optical fiber with embedded electrodes actuated by Joule heating. Materials. 7(8), 5591-5602(2014).

【58】Sandoghchi S R, Jasion G T, Wheeler N V et al. X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms. Optics Express. 22(21), 26181-26192(2014).

引用该论文

Zhenggang Lian, Xiang Chen, Xin Wang, Shuqin Lou, Zhen Guo, Yabin Pi. Preparation and Potential Applications of Microstructured and Integrated Functional Optical Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170615

廉正刚, 陈翔, 王鑫, 娄淑琴, 郭臻, 皮亚斌. 微结构和集成式功能光纤的制备和潜在应用[J]. 激光与光电子学进展, 2019, 56(17): 170615

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF