首页 > 论文 > 激光与光电子学进展 > 56卷 > 23期(pp:232602--1)

将量子隐形传态看作量子信道的通信方式

Communication Method Regarding Quantum Teleportation as Quantum Channel

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

一次一密经典通信方式存在密钥丢失的风险,在传输大量数据时密钥会很快消耗完,不适于大数据经典通信,同时量子隐形传态由于要区分四个Bell态,实现起来比较困难。考虑到量子信道不仅能传输量子信息,还可以传输经典信息,提出将量子隐形传态看作量子信道,进而传输经典信息序列。在传输的过程中将待传输的信息0和1分别编码为计算基矢态|0>和|1>,这样在保证安全性的基础上可以不停地生成密钥,适用于大数据通信,同时此方案只需区分两种Bell态,实现起来比较容易。

Abstract

The classical one-time-pad communication method exhibits the disadvantage of key loss and the shortcoming that the key will be quickly exhausted when a large amount of data is transmitted, making it unsuitable for classical big data communication. Further, it is difficult to distinguish the four Bell states in quantum teleportation. This study considers quantum teleportation as a quantum channel that transmits classical information sequences because quantum channels not only transmit quantum information but also classical information. The transmitted data 0 and 1 are encoded as quantum states |0> and |1>, respectively. The proposed scheme can continuously ensure security and generate keys, which is suitable for big data communication. Furthermore, this scheme only needs to distinguish between two kinds of Bell states, which can be easily implemented.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.232602

所属栏目:物理光学

基金项目:国家自然科学基金、国防科大校内科研重点项目、陕西省重点研发计划;

收稿日期:2019-04-12

修改稿日期:2019-06-03

网络出版日期:2019-12-01

作者单位    点击查看

贺转玲:国防科技大学信息通信学院, 陕西 西安 710106
孙苗:重庆师范大学计算机与信息科学学院, 重庆 401331
曾晗:国防科技大学信息通信学院, 陕西 西安 710106
贺岳星:国防科技大学信息通信学院, 陕西 西安 710106

联系人作者:贺转玲(hezhuanling0612@126.com)

备注:国家自然科学基金、国防科大校内科研重点项目、陕西省重点研发计划;

【1】Su X Q, Guo G C. Quantum communication and quantum computation [J]. Chinese Journal of Quantum Electronics. 2004, 21(6): 706-718.
苏晓琴, 郭光灿. 量子通信与量子计算 [J]. 量子电子学报. 2004, 21(6): 706-718.

【2】Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Physical Review Letters. 1993, 70(13): 1895-1899.

【3】Nandi K, Mazumdar C. Quantum teleportation of a two qubit state using GHZ-like state [J]. International Journal of Theoretical Physics. 2014, 53(4): 1322-1324.

【4】Sun X M, Zha X W. A scheme of bidirectional quantum controlled teleportation via six-qubit maximally entangled state [J]. Acta Photonica Sinica. 2013, 42(9): 1052-1056.
孙新梅, 查新未. 基于六粒子最大纠缠态的双向控制隐形传态方案 [J]. 光子学报. 2013, 42(9): 1052-1056.

【5】Lu H, Chen L B, Huang C Q, et al. Teleportation of an entangled state via the W states [J]. Chinese Journal of Quantum Electronics. 2004, 21(6): 730-733.
路洪, 陈立冰, 黄纯青, 等. 用W态作量子信道实现纠缠态的隐形传送 [J]. 量子电子学报. 2004, 21(6): 730-733.

【6】Ye L, Yao C M, Guo G C. Teleportation of a two-particle entangled state [J]. Chinese Physics. 2001, 10(11): 1001-1003.

【7】Dyer S, Takesue H, Verma V, et al. Polarization-insensitive superconducting nanowire single-photon detectors . [C]//CLEO: 2015, May 10-15, 2015, San Jose, California, United States. Washington, D. C. : OSA. 2015, FF2A: 4.

【8】Xia X X, Sun Q C. The latest developments of fiber quantum teleportation [J]. Journal of Information Security Research. 2017, 3(1): 36-43.
夏秀秀, 孙启超. 光纤量子隐形传态技术最新进展 [J]. 信息安全研究. 2017, 3(1): 36-43.

【9】Sun Q C, Mao Y L, Chen S J, et al. Quantum teleportation with independent sources and prior entanglement distribution over a network [J]. Nature Photonics. 2016, 10(10): 671-675.

【10】Valivarthi R. Puigibert M L G, Zhou Q, et al. Quantum teleportation across a metropolitan fibre network [J]. Nature Photonics. 2016, 10(10): 676-680.

【11】Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation [J]. Nature. 1997, 390(6660): 575-579.

【12】Karlsson A, Bourennane M. Quantum teleportation using three-particle entanglement [J]. Physical Review A. 1998, 58(6): 4394-4400.

【13】Yang Y F, Ye Z Q. Scheme of two-way quantum teleportation and security [J]. Acta Photonica Sinica. 2013, 42(5): 619-622.
杨幼凤, 叶志清. 双向隐形传态方案及安全性分析 [J]. 光子学报. 2013, 42(5): 619-622.

【14】Zou X, Ye Z Q. Two-way quantum teleportation controlled by a third party [J]. Chinese Journal of Quantum Electronics. 2012, 29(6): 683-687.
邹昕, 叶志清. 基于第三方控制的量子双向传态 [J]. 量子电子学报. 2012, 29(6): 683-687.

【15】Yang C P, Chu S I, Han S Y. Efficient many-party controlled teleportation of multiqubit quantum information via entanglement [J]. Physical Review A. 2004, 70(2): 022329.

【16】Zou X, Ye Z Q. Based on four-qubit cluster state secretly shared by three parties to realize controlled teleportation of three-qubit state [J]. Journal of Jiangxi Normal University(Natural Science Edition). 2012, 36(3): 263-266.
邹昕, 叶志清. 基于三方秘密共享4粒子团簇态实现三比特量子态的可控隐形传态 [J]. 江西师范大学学报(自然科学版). 2012, 36(3): 263-266.

【17】Tian X L, Hu Y, Fu H Z. Research on tensor representation of quantum teleportation [J]. Journal of Xi''''an University of Posts and Telecommunications. 2014, 19(4): 1-8.
田秀劳, 胡洋, 符洪姿. 张量表示的量子隐形传态研究 [J]. 西安邮电大学学报. 2014, 19(4): 1-8.

【18】He Z L, Guo D B, Wang X K. Security capacity of compound wiretap channel [J]. Laser & Optoelectronics Progress. 2015, 52(11): 112701.
贺转玲, 郭大波, 王晓凯. 复合窃听信道的安全容量 [J]. 激光与光电子学进展. 2015, 52(11): 112701.

【19】Zhai S Q, Zhang Y. Duplex hybrid entanglement manipulation based on linear optics [J]. Chinese Journal of Lasers. 2016, 43(11): 1112002.
翟淑琴, 张姚. 基于线性光学的双通道混合纠缠操控 [J]. 中国激光. 2016, 43(11): 1112002.

【20】Brunner N, Beveratos A, et al. . Quantum teleportation with a three-Bell-state analyzer [J]. Physical Review Letters. 2006, 96(13): 130502.

【21】Xia X X, Sun Q C. The latest developments of fiber quantum teleportation [J]. Journal of Information Security Research. 2017, 3(1): 36-43.
夏秀秀, 孙启超. 光纤量子隐形传态技术最新进展 [J]. 信息安全研究. 2017, 3(1): 36-43.

引用该论文

He Zhuanling,Sun Miao,Zeng Han,He Yuexing. Communication Method Regarding Quantum Teleportation as Quantum Channel[J]. Laser & Optoelectronics Progress, 2019, 56(23): 232602

贺转玲,孙苗,曾晗,贺岳星. 将量子隐形传态看作量子信道的通信方式[J]. 激光与光电子学进展, 2019, 56(23): 232602

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF