首页 > 论文 > Photonics Research > 8卷 > 9期(pp:1448-1456)

Low-temperature GaAs-based plasmonic photoconductive terahertz detector with Au nano-islands

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We have fabricated low-temperature grown GaAs (LT-GaAs)-based plasmonic photoconductive antennas by RF sputtering of Au nanoparticles and have evaluated their terahertz detection properties. Localized surface plasmon resonance enhances the electric fields near the surface and increases the optical absorption of nanoparticles. The resonance frequency depends on the density of electrons, the effective electron mass, and the size and shape of the nanoparticles. Therefore, we tried to develop a high-sensitivity LT-GaAs photoconductive detector (PCD), which is effective over a wide range of wavelengths, by RF sputtering of Au nano-islands with a variety of aspect ratios from 1.2 to 5.1 on the dipole gap region of the PCD. As a result, we succeeded in increasing the sensitivity by 29% and 40% in the amplitude of observed terahertz pulse for 800 nm and 1560 nm femtosecond laser excitations, respectively.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.395517

所属栏目:Surface Optics and Plasmonics

基金项目:Japan Society for the Promotion of Science10.13039/501100001691;

收稿日期:2020-04-21

录用日期:2020-06-26

网络出版日期:2020-06-30

作者单位    点击查看

Hironaru Murakami:Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-08771, Japan
Tomoya Takarada:Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-08771, Japan
Masayoshi Tonouchi:Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-08771, Japan

联系人作者:Hironaru Murakami(hiro@ile.osaka-u.ac.jp)

备注:Japan Society for the Promotion of Science10.13039/501100001691;

【1】M. TonouchiM. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics. 1, 97-105(2007).

【2】B. Ferguson and X. C. Zhang. Materials for terahertz science and technology. Nat. Mater. 1, 26-33(2002).

【3】J. B. Baxter and G. W. Guglietta. Terahertz spectroscopy. Anal. Chem. 83, 4342-4368(2004).

【4】D. S. Rana and M. Tonouchi. Terahertz emission functionality of high-temperature superconductors and similar complex systems. Adv. Opt. Mater. 8, (2019).

【5】H. Murakami, S. Fujiwara, I. Kawayama and M. Tonouchi. Study of photoexcited-carrier dynamics in photoconductive switches using dynamic terahertz emission microscopy. Photon. Res. 4, A9-A15(2016).

【6】K. Serita, E. Matsuda, K. Okada, H. Murakami, I. Kawayama and M. Tonouchi. Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms. APL Photon. 3, (2018).

【7】H. Murakami, K. Serita, Y. Maekawa, S. Fujiwara, E. Matsuda, S. Kim, I. Kawayama and M. Tonouchi. Scanning laser THz imaging system. J. Phys. D. 47, (2014).

【8】M. Tani, K.-S. Lee and X.-C. Zhang. Detection of terahertz radiation with low-temperature-grown GaAs based photoconductive antenna using 1.55 μm probe. Appl. Phys. Lett. 77, 1396-1398(2000).

【9】C. Zhang, L. Chai, Y. Song, M. Hu and C. Wang. Ultra-broadband optical spectrum generation from a stretched pulse fiber laser utilizing zero-dispersion fiber. Chin. Opt. Lett. 11, (2013).

【10】X.-C. Zhang and D. H. Auston. Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics. J. Appl. Phys. 71, 326-338(1992).

【11】R. Kersting, K. Unterrainer, G. Strasser, H. F. Kauffmann and E. Gornik. Few-cycle THz emission from cold plasma oscillations. Phys. Rev. Lett. 79, 3038-3041(1997).

【12】R. Huber, A. Brodschelm, F. Tauser and A. Leitenstorfer. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Appl. Phys. Lett. 76, 3191-3193(2000).

【13】M. TonouchiM. Tonouchi. Simplified formulas for the generation of terahertz waves from semiconductor surfaces excited with a femtosecond laser. J. Appl. Phys. 127, (2020).

【14】H. DemberH. Dember. über eine photoelektronische Kraft in Kupferoxydul-Kristallen. Z. Phys. 32, 554-556(1931).

【15】J. Hebling, G. Almási, I. Z. Kozma and J. Kuhl. Velocity matching by pulse front tilting for large-area THz-pulse generation. Opt. Express. 10, 1161-1166(2002).

【16】M. Kaminska, Z. L. Weber, E. R. Weber and T. George. Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures. Appl. Phys. Lett. 54, 1881-1883(1989).

【17】S. Gupta, J. F. Whitaker and G. A. Mourou. Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures. IEEE J. Quantum Electron. 28, 2464-2472(1992).

【18】D. C. LookD. C. Look. Molecular beam epitaxial GaAs grown at low temperatures. Thin Solid Films. 231, 61-73(1993).

【19】M. C. Beard, G. M. Turner and C. A. Schmuttenmaer. Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy. J. Appl. Phys. 90, 5915-5923(2001).

【20】P. Pohl, F. H. Renner, M. Eckardt, A. Schwanh?u?er, A. Friedrich, ?. Yüksekdag, S. Malzer and G. H. D?hler. Enhanced recombination tunneling in GaAs pn junctions containing low-temperature-grown-GaAs and ErAs layers. Appl. Phys. Lett. 83, 4035-4037(2003).

【21】R. S. Adhav, S. R. Adhav and J. M. Pelaprat. BBO’s nonlinear optical phase-matching properties. Laser Focus. 23, 88-100(1987).

【22】A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa and Y. Kadoya. Detection of terahertz waves using low-temperature-grow InGaAs with 1.56 μm pulse excitation. Appl. Phys. Lett. 90, (2007).

【23】M. Suzuki and M. Tonouchi. Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses. Appl. Phys. Lett. 86, (2005).

【24】H. Murakami, K. Mizui and M. Tonouchi. High-sensitivity photoconductive detectors with wide dipole electrodes for low frequency THz wave detection. J. Appl. Phys. 125, (2019).

【25】A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie and R. Gordon. Plasmon-enhanced below bandgap photoconductive terahertz generation and detection. Nano Lett. 15, 8306-8310(2015).

【26】F. Fesharaki, A. Jooshesh, V. Bahrami-Yekta, M. Mahtab, T. Tiedje, T. E. Darcie and R. Gordon. Plasmonic antireflection coating for photoconductive terahertz generation. ACS Photon. 4, 1350-1354(2017).

【27】O. Abdulmunem, K. Hassoon, M. Gaafar, A. Rahimi-Iman and J. C. Balzer. TiN nanoparticles for enhanced THz generation in TDS systems. J. Infrared Millim. Terahertz Waves. 38, 1206-1214(2017).

【28】S.-G. Park, K. H. Jin, M. Yi, J. C. L. Ye, J. Ahn and K.-H. Jeong. Enhancement of terahertz pulse emission by optical nanoantenna. ACS Nano. 6, 2026-2031(2012).

【29】S.-G. Park, Y. Choi, Y.-J. Oh and K.-H. Jeong. Terahertz photoconductive antenna with metal nanoislands. Opt. Express. 20, 25530-25535(2012).

【30】S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan, P. Belov, A. Alú and E. U. Rafailov. Boosting terahertz photoconductive antenna performance with optimised plasmonic nanostructures. Sci. Rep. 8, (2018).

【31】N. T. Yardimci and M. Jarrahi. Nanostructure-enhanced photoconductive terahertz emission and detection. Small. 14, (2018).

【32】M. Bashirpour, M. Forouzmehr, S. E. Hosseininejad, M. Kolahdouz and M. Neshat. Improvement of terahertz photoconductive antenna using optical antenna array of ZnO nanorods. Sci. Rep. 9, (2019).

【33】T. Siday, P. P. Vabishchevich, L. Hale, C. T. Harris, T. S. Luk, J. L. Reno, I. Brener and O. Mitrofanov. Terahertz detection with perfectly-absorbing photoconductive metasurface. Nano Lett. 19, 2888-2896(2019).

【34】N. Wang, M. R. Hashemi and M. Jarrahi. Plasmonic photoconductive detectors for enhanced terahertz detection sensitivity. Opt. Express. 21, 17221-17227(2013).

【35】N. T. Yardimci and M. Jarrahi. High sensitivity terahertz detection through large-area plasmonic nano-antenna arrays. Sci. Rep. 7, (2017).

【36】S. Cakmakyapan, P. K. Lu, A. Navabi and M. Jarrahi. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light: Sci. Appl. 7, (2018).

【37】C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu and M. Jarrahi. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nat. Commun. 4, (2013).

【38】K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B. 107, 668-677(2003).

【39】N. T. Yardimci, H. Lu and M. Jarrahi. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays. Appl. Phys. Lett. 109, (2016).

【40】Y. Tian and T. Tatsuma. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632-7637(2005).

【41】S. Link and M. A. El-Sayed. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B. 103, 8410-8426(1999).

【42】I. Romero, J. Aizpurua, G. W. Bryant and F. J. García de Abajo. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Express. 14, 9988-9999(2006).

【43】E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz and C. A. Mirkin. Multipole plasmon resonances in gold nanorods. J. Phys. Chem. B. 110, 2150-2154(2006).

【44】R. GansR. Gans. über die form ultramikroskopischer goldteilchen. Ann. Phys. 342, 881-900(1912).

【45】R. GansR. Gans. über die Form ultramikroskopischer Silberteilchen. Ann. Phys. 352, 270-284(1915).

【46】G. MieG. Mie. Beitr?ge zur Optik trüber Medien, speziell kolloidaler Metall?sungen. Ann. Phys. 330, 377-445(1908).

【47】C. A. Foss, G. L. Hornyak, M. J. Tierney and C. R. Martin. Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory. J. Phys. Chem. 96, 9001-9007(1992).

【48】G. L. Hornyak, C. J. Patrissi and C. R. Martin. Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: the nonscattering Maxwell-Garnett limit. J. Phys. Chem. B. 101, 1548-1555(1997).

【49】S. Link, M. B. Mohamed and M. A. El-Sayed. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B. 103, 3073-3077(1999).

【50】R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman and M. B. Raschke. Optical dielectric function of gold. Phys. Rev. B. 86, (2012).

【51】G. A. SamaraG. A. Samara. Temperature and pressure dependence of the dielectric constants of semiconductors. Phys. Rev. B. 27, 3494-3505(1983).

引用该论文

Hironaru Murakami, Tomoya Takarada, and Masayoshi Tonouchi, "Low-temperature GaAs-based plasmonic photoconductive terahertz detector with Au nano-islands," Photonics Research 8(9), 1448-1456 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF