首页 > 论文 > 中国激光 > 47卷 > 7期(pp:701010--1)

表面等离激元半导体纳米激光器 (特邀综述)

Surface Plasmon Semiconductor Nanolaser (Invited)

智婷   陶涛   刘斌   张荣  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

激光技术的发展推动了现代科学与技术的进步,改变了人类的生活。其中微型化激光光源成为目前的研究热点之一。得益于金属等离激元的光场强局域化作用,等离激元纳米激光器不仅能够获得突破光学衍射极限的超小物理尺寸,而且可以实现大调制速度以及极小的激射阈值,从而受到广泛的关注。对国内外等离激元纳米激光器的近期进展进行了综述,从增益介质、金属种类和器件结构三个方面进行对比总结,最后对等离激元纳米激光器的未来发展潜力进行讨论和展望。

Abstract

The development of laser technique has promoted the progress of modern science and technology, and changed the life of human beings. Among them, the miniaturized laser light source has become one of the research hotspots. Due to the effect of the intensity confinement of metal plasmon, plasmonic nano lasers are able to achieve ultra-small physical size which can break through the optical diffraction limit, and achieve the high modulation speed and minimum lasing threshold, so it is widely concerned. In this review, the recent progress of plasmon nanolasers at home and abroad is discussed. The gain media, metal species, and device structures are compared and summarized. Finally, the future development potential of the plasmon nanolasers is discussed and prospected.

广告组5 - 光束分析仪
补充资料

中图分类号:O539

DOI:10.3788/CJL202047.0701010

所属栏目:“半导体激光器”专题

基金项目:国家重点研发计划、国家自然科学基金、江苏省自然科学基金、固态照明与节能电子学协同创新中心项目;

收稿日期:2020-04-16

修改稿日期:2020-06-08

网络出版日期:2020-07-01

作者单位    点击查看

智婷:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
陶涛:南京大学电子科学与工程学院, 江苏 南京 210046
刘斌:南京大学电子科学与工程学院, 江苏 南京 210046
张荣:南京大学电子科学与工程学院, 江苏 南京 210046厦门大学, 福建 厦门 361005

联系人作者:刘斌(bliu@nju.edu.cn)

备注:国家重点研发计划、国家自然科学基金、江苏省自然科学基金、固态照明与节能电子学协同创新中心项目;

【1】Maiman T. Stimulated optical radiation in ruby [J]. Nature. 1960, 187(4736): 493-494.

【2】Chang S W, Lin T R, Chuang S L. Theory of plasmonic Fabry-Perot nanolasers [J]. Optics Express. 2010, 18(14): 15039-15053.

【3】Altug H, Englund D, Vuckovic J. Ultrafast photonic crystal nanocavity laser [J]. Nature Physics. 2006, 2(7): 484-488.

【4】Athanasiou M, Smith R M, Liu B, et al. Room temperature continuous-wave green lasing from an InGaN microdisk on silicon [J]. Scientific Reports. 2015, 4(1): 7250.

【5】Pauzauskie P J, Sirbuly D J, Yang P D. Semiconductor nanowire ring resonator laser [J]. Physical Review Letters. 2006, 96(14): 143903.

【6】Kim M W, Ku P. Lasing in a metal-clad microring resonator [J]. Applied Physics Letters. 2011, 98(13): 131107.

【7】Xu H W, Wright J B, Hurtado A, et al. Gold substrate-induced single-mode lasing of GaN nanowires [J]. Applied Physics Letters. 2012, 101(22): 221114.

【8】Xu H W, Wright J B, Luk T S, et al. Single-mode lasing of GaN nanowire-pairs [J]. Applied Physics Letters. 2012, 101(11): 113106.

【9】Sun Y, Zhou K, Sun Q, et al. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si [J]. Nature Photonics. 2016, 10(9): 595-599.

【10】Feng M X, He J L, Sun Q, et al. Room-temperature electrically pumped InGaN-based microdisk laser grown on Si [J]. Optics Express. 2018, 26(4): 5043-5051.

【11】Das A, Heo J, Jankowski M, et al. Room temperature ultralow threshold GaN nanowire polariton laser [J]. Physical Review Letters. 2011, 107(6): 066405.

【12】Alix-Panabières C, Pantel K. Here comes the spaser [J]. Nature Materials. 2017, 16(8): 790-791.

【13】Christopoulos S, Grundy A J D, et al. Room-temperature polariton lasing in semiconductor microcavities [J]. Physical Review Letters. 2007, 98(12): 126405.

【14】Zheludev N I, Prosvirnin S L, Papasimakis N, et al. Lasing spaser [J]. Nature Photonics. 2008, 2(6): 351-354.

【15】Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of aspaser-based nanolaser [J]. Nature. 2009, 460(7259): 1110-1112.

【16】Flynn R A, Kim C S, Vurgaftman I, et al. Aroom-temperature semiconductor spaser operating near 15 μm [J]. Optics Express. 2011, 19(9): 8954-8961.

【17】Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit [J]. Nature Photonics. 2010, 4(2): 83-91.

【18】Nezhad M P, Simic A, Bondarenko O, et al. Room-temperature subwavelength metallo-dielectric lasers [J]. Nature Photonics. 2010, 4(6): 395-399.

【19】Stockman M I. Nanoplasmonics: past, present, and glimpse into future [J]. Optics Express. 2011, 19(22): 22029-22106.

【20】Brongersma M L, Shalaev V M. The case for plasmonics [J]. Science. 2010, 328(5977): 440-441.

【21】Yin Y, Qiu T, Li J Q, et al. Plasmonic nano-lasers [J]. Nano Energy. 2012, 1(1): 25-41.

【22】Ramezani M, Halpin A. Fernandez-Dominguez A I, et al. Plasmon-exciton-polariton lasing [J]. Optica. 2017, 4(1): 31-37.

【23】Ma R M, Oulton R F. Applications of nanolasers [J]. Nature Nanotechnology. 2019, 14(1): 12-22.

【24】Yang L, Duan Z Y, Ma L H, et al. Surface plasmon polartion nanolasers [J]. Laser & Optoelectronics Progress. 2019, 56(20): 202409.
杨琳, 段智勇, 马刘红, 等. 表面等离子激元纳米激光器综述 [J]. 激光与光电子学进展. 2019, 56(20): 202409.

【25】Wood R W. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum [J]. Philosophical Magazine. 1902, 4(21): 396-402.

【26】Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems [J]. Physical Review Letters. 2003, 90(2): 027402.

【27】Oulton R F, Sorger V J, Genov D A, et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation [J]. Nature Photonics. 2008, 2(8): 496-500.

【28】Azzam S I, Kildishev A V, Ma R-M, et al. Ten years of spasers and plasmonic nanolasers [J]. Light-Science & Applications. 2020, 9(1): 90.

【29】Zhou W, Dridi M, Suh J Y, et al. Lasing action in strongly coupled plasmonic nanocavity arrays [J]. Nature Nanotechnology. 2013, 8(7): 506-511.

【30】Yang A K, Hoang T B, Dridi M, et al. Real-time tunable lasing from plasmonic nanocavity arrays [J]. Nature Communications. 2015, 6: 6939.

【31】Wang D Q, Yang A K, Wang W J, et al. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices [J]. Nature Nanotechnology. 2017, 12(9): 889-894.

【32】Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale [J]. Nature. 2009, 461(7264): 629-632.

【33】Tao T, Zhi T, Liu B, et al. Lasers: manipulable and hybridized, ultralow-threshold lasing in a plasmonic laser using elliptical InGaN/GaN nanorods [J]. Advanced Functional Materials. 2017, 27(37): 1703198.

【34】van Beijnum F, van Veldhoven P J, Geluk E J, et al. Surface plasmon lasing observed in metal hole arrays [J]. Physical Review Letters. 2013, 110(20): 206802.

【35】Wang Z L. A review on research progress in surface plasmons [J]. Progress in Physics. 2009, 29(3): 287-324.
王振林. 表面等离激元研究新进展 [J]. 物理学进展. 2009, 29(3): 287-324.

【36】Auguie B, Barnes W L. Collective resonances in gold nanoparticle arrays [J]. Physical Review Letters. 2008, 101(14): 143902.

【37】Anker J N, Paige Hall W, Lyandres O, et al. Biosensing with plasmonic nanosensors [J]. Nature Materials. 2008, 7(6): 442-453.

【38】Vecchi G, Giannini V, Gomez Rivas J. Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas [J]. Physical Review B. 2009, 80(20): 201401.

【39】Suh J Y, Kim C H, Zhou W, et al. Plasmonic Bowtie nanolaser arrays [J]. Nano Letters. 2012, 12(11): 5769-5774.

【40】Guo L H, Jackman J A, Yang H H, et al. Strategies for enhancing the sensitivity of plasmonic nanosensors [J]. Nano Today. 2015, 10(2): 213-239.

【41】Rekola H T, Hakala T K, T?rm? P. One-dimensional plasmonic nanoparticle chain lasers [J]. ACS Photonics. 2018, 5(5): 1822-1826.

【42】Henzie J, Lee J, Lee M H, et al. Nanofabrication of plasmonic structures [J]. Annual Review of Physical Chemistry. 2009, 60(1): 147-165.

【43】Siegman A E. Lasers [M]. Mill Valley: University Science Books. 1986, 466-472.

【44】Chen Y C, Chen Q S, Fan X D. Lasing in blood [J]. Optica. 2016, 3(8): 809-815.

【45】Yokoyama H, Nishi K, Anan T, et al. Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities [J]. Optical and Quantum Electronics. 1992, 24(2): S245-S272.

【46】Gather M C. A rocky road to plasmonic lasers [J]. Nature Photonics. 2012, 6(11): 708.

【47】Bouillard J S G, Dickson W, O''''Connor D P, et al. Low-temperature plasmonics of metallic nanostructures [J]. Nano Letters. 2012, 12(3): 1561-1565.

【48】Nefedkin N E, Zyablovsky A, Andrianov E S, et al. Mode cooperation in a two-dimensional plasmonic distributed-feedback laser [J]. ACS Photonics. 2018, 5(8): 3031-3039.

【49】Wang D Q, Wang W J, Knudson M P, et al. Structural engineering in plasmon nanolasers [J]. Chemical Reviews. 2017, 118(6): 2865-2881.

【50】Chen H Z, Hu J Q, Wang S, et al. Imaging the dark emission of spasers [J]. Science Advances. 2017, 3(4): e1601962.

【51】Hakala T K, Moilanen A J, Vakevainen A I, et al. Bose-Einstein condensation in a plasmonic lattice [J]. Nature Physics. 2018, 14(7): 739-744.

【52】Hoang T B, Akselrod G M, Yang A K, et al. Millimeter-scale spatial coherence from a plasmon laser [J]. Nano Letters. 2017, 17(11): 6690-6695.

【53】Basov D N, Fogler M M. 354(6309): aag1992 [J]. Garcia de Abajo F J. Polaritons invan der Waals materials. Science. 2016.

【54】Schneider C, Rahimi-Iman A, Kim N Y, et al. An electrically pumped polariton laser [J]. Nature. 2013, 497(7449): 348-352.

【55】Genet C, Ebbesen T W. Light in tiny holes [J]. Nature. 2007, 445(7123): 39-46.

【56】Balili R, Hartwell V, Snoke D, et al. Bose-Einstein condensation of microcavity polaritons in a trap [J]. Science. 2007, 316(5827): 1007-1010.

【57】Kasprzak J, Richard M, Kundermann S, et al. Bose-Einstein condensation of exciton polaritons [J]. Nature. 2006, 443(7110): 409-414.

【58】Tao T, Zhi T, Liu B, et al. Plasmonic nanolasers: electron-beam-driven III-nitride plasmonic nanolasers in the deep-UV and visible region [J]. Small. 2020, 16(1): 2070001.

【59】Stockman M I. Spasers explained [J]. Nature Photonics. 2008, 2(6): 327-329.

【60】Li T, Chen J, Zhu S N. Manipulating surface plasmon propagation: from beam modulation to near-field holography [J]. Laser & Optoelectronics Progress. 2017, 54(5): 050002.
李涛, 陈绩, 祝世宁. 表面等离激元的传播操控: 从波束调制到近场全息 [J]. 激光与光电子学进展. 2017, 54(5): 050002.

【61】Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers [J]. Journal of Applied Physics. 1972, 43(5): 2327-2335.

【62】Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics [J]. Nature. 2003, 424(6950): 824-830.

【63】Oulton R F. Surface plasmon lasers: sources of nanoscopic light [J]. Materials Today. 2012, 15(1/2): 26-34.

【64】Schokker A H, Koenderink A F. Lasing at the band edges of plasmonic lattices [J]. Physical Review B. 2014, 90(15): 155452.

【65】Gwo S, Shih C K. Semiconductor plasmonic nanolasers: current status and perspectives [J]. Reports on Progress in Physics. 2016, 79(8): 086501.

【66】Guo X, Ma Y G, Wang Y P, et al. Nanowire plasmonic waveguides, circuits and devices [J]. Laser & Photonics Reviews. 2013, 7(6): 855-881.

【67】No Y S, Choi J H, Ee H S, et al. A double-strip plasmonic waveguide coupled to an electrically driven nanowire LED [J]. Nano Letters. 2013, 13(2): 772-776.

【68】Guo X, Ying Y B, Tong L M. Photonic nanowires: from subwavelength waveguides to optical sensors [J]. Accounts of Chemical Research. 2014, 47(2): 656-666.

【69】Fei Z, Scott M E, Gosztola D J, et al. Nano-optical imaging of WSe2waveguide modes revealing light-exciton interactions [J]. Physical Review B. 2016, 94(8): 081402.

【70】Li Y J, Lv Y, Zou C L, et al. Output coupling of perovskite lasers from embedded nanoscale plasmonic waveguides [J]. Journal of the American Chemical Society. 2016, 138(7): 2122-2125.

【71】Dolores-Calzadilla V, Romeira B, Pagliano F, et al. Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon [J]. Nature Communications. 2017, 8: 14323.

【72】Kewes G, Herrmann K, Rodríguez-Oliveros R, et al. Limitations of particle-based spasers [J]. Physical Review Letters. 2017, 118(23): 237402.

【73】Deeb C, Guo Z, Yang A K, et al. Correlating nanoscopic energy transfer and far-field emission to unravel lasing dynamics in plasmonic nanocavity arrays [J]. Nano Letters. 2018, 18(2): 1454-1459.

【74】Hinke Schokker A, Femius Koenderink A. Statistics of randomized plasmonic lattice lasers [J]. ACS Photonics. 2015, 2(9): 1289-1297.

【75】Zhai T R, Xu Z Y, Wu X F, et al. Ultra-thin plasmonic random lasers [J]. Optics Express. 2016, 24(1): 437-442.

【76】Wang Z X, Meng X G, Kildishev A V, et al. Nanolasers enabled by metallic nanoparticles: from spasers to random lasers [J]. Laser & Photonics Reviews. 2017, 11(6): 1700212.

【77】Qiao Q, Shan C X, Zheng J, et al. Surface plasmon enhanced electrically pumped random lasers [J]. Nanoscale. 2013, 5(2): 513-517.

【78】Ning S Y, Wu Z X, Dong H, et al. The enhanced random lasing from dye-doped polymer films with different-sized silver nanoparticles [J]. Organic Electronics. 2016, 30: 165-170.

【79】Fallert J. Dietz R J B, Hauser M, et al. Random lasing in ZnO nanocrystals [J]. Journal of Luminescence. 2009, 129(12): 1685-1688.

【80】Wang Z X, Meng X G, Choi S, et al. Controlling random lasing with three-dimensional plasmonic nanorod metamaterials [J]. Nano Letters. 2016, 16(4): 2471-2477.

【81】Lu Y, Kim J, Chen H, et al. Plasmonic nanolaser using epitaxially grown silver film [J]. Science. 2012, 337(6093): 450-453.

【82】Zhang Q, Li G Y, Liu X F, et al. A room temperature low-threshold ultraviolet plasmonic nanolaser [J]. Nature Communications. 2014, 5: 4953.

【83】Zhang Q, Shang Q Y, Shi J, et al. Wavelength tunable plasmonic lasers based on intrinsic self-absorption of gain material [J]. ACS Photonics. 2017, 4(11): 2789-2796.

【84】Lu J F, Jiang M M, Wei M, et al. Plasmon-induced accelerated exciton recombination dynamics in ZnO/Ag hybrid nanolasers [J]. ACS Photonics. 2017, 4(10): 2419-2424.

【85】Fang C Y, Pan S H, Vallini F, et al. Lasing action in low-resistance nanolasers based on tunnel junctions [J]. Optics Letters. 2019, 44(15): 3669-3672.

【86】Bjork G, Karlsson A, Yamamoto Y. Definition of alaser threshold [J]. Physical Review A. 1994, 50(2): 1675-1680.

【87】Berini P, de Leon I. Surface plasmon-polariton amplifiers and lasers [J]. Nature Photonics. 2012, 6(1): 16-24.

【88】Akahane Y, Asano T, Song B S, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal [J]. Nature. 2003, 425(6961): 944-947.

【89】Kwon S H, Kang J H, Seassal C, et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity [J]. Nano Letters. 2010, 10(9): 3679-3683.

【90】Genov D A, Oulton R F, Bartal G, et al. Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures [J]. Physical Review B. 2011, 83(24): 245312.

【91】Oulton R F. Loss and gain [J]. Nature Photonics. 2012, 6(4): 219-221.

【92】Li J T, Lin Y, Lu J F, et al. Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance [J]. ACS Nano. 2015, 9(7): 6794-6800.

【93】Lu Y J, Wang C Y, Kim J, et al. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing [J]. Nano Letters. 2014, 14(8): 4381-4388.

【94】Wang S, Chen H Z, Ma R M. High performance plasmonic nanolasers with external quantum efficiency exceeding 10 [J]. Nano Letters. 2018, 18(12): 7942-7948.

【95】Ding K, Yin L J, Hill M T, et al. An electrical injection metallic cavity nanolaser with azimuthal polarization [J]. Applied Physics Letters. 2013, 102(4): 041110.

【96】Ma R M, Ota S, Li Y M, et al. Explosives detection in a lasing plasmon nanocavity [J]. Nature Nanotechnology. 2014, 9(8): 600-604.

【97】Chou Y H, Chou B T, Chiang C K, et al. Ultrastrong mode confinement in ZnO surface plasmon nanolasers [J]. ACS Nano. 2015, 9(4): 3978-3983.

【98】Huang X P, Zhang P F, Lin E, et al. Fabrication and optically pumped lasing of plasmonic nanolaser with regular ZnO/GaN nanoheterojunction array [J]. Applied Physics A. 2017, 123(9): 605.

【99】Chen Z X, Lai B Y, Zhang J M, et al. Hybrid material based on plasmonic nanodisks decorated ZnO and its application on nanoscale lasers [J]. Nanotechnology. 2014, 25(29): 295203.

【100】Wu D, Jiang Y, Li S Y, et al. Construction of high-quality CDS: Ga nanoribbon/silicon heterojunctions and their nano-optoelectronic applications [J]. Nanotechnology. 2011, 22(40): 405201.

【101】Husham M, Hassan Z, Selman A M, et al. Microwave-assisted chemical bath deposition of nanocrystalline CdS thin films with superior photodetection characteristics [J]. Sensors and Actuators A: Physical. 2015, 230: 9-16.

【102】Ma R M, Dai L, Qin G G. Enhancement-mode metal-semiconductor field-effect transistors based on single n-CdS nanowires [J]. Applied Physics Letters. 2007, 90(9): 093109.

【103】Ma R M, Dai L, Huo H B, et al. High-performance logic circuits constructed on single CdS nanowires [J]. Nano Letters. 2007, 7(11): 3300-3304.

【104】Weber C, Becker U, Renner R, et al. Measurement of the diffusion-length of carriers and excitons in CdS using laser-induced transient gratings [J]. Zeitschrift für Physik B Condensed Matter. 1988, 72(3): 379-384.

【105】Chakraborty R, Greullet F, George C, et al. Broad spectral photocurrent enhancement in Au-decorated CdSe nanowires [J]. Nanoscale. 2013, 5(12): 5334-5340.

【106】Liu Y, Zapien J A, Shan Y, et al. Wavelength-tunable lasing in single-crystal CdS1-XSeX nanoribbons [J]. Nanotechnology. 2007, 18(36): 365606.

【107】Long D B, Li M K, Meng D X, et al. Theoretical investigation of the structural, electronic, and thermodynamic properties of CdS1-xSex alloys [J]. Journal of Applied Physics. 2018, 123(10): 105103.

【108】Winkler J M, Rabouw F T, Rossinelli A A, et al. Room-temperature strong coupling of CdSe nanoplatelets and plasmonic hole arrays [J]. Nano Letters. 2019, 19(1): 108-115.

【109】Kneissl M, Seong T Y, Han J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies [J]. Nature Photonics. 2019, 13(4): 233-244.

【110】Lee C J, Yeh H, Cheng F, et al. Low-threshold plasmonic lasers on a single-crystalline epitaxial silver platform at telecom wavelength [J]. ACS Photonics. 2017, 4(6): 1431-1439.

【111】Wu C Y, Kuo C T, Wang C Y, et al. Plasmonic green nanolaser based on a metal-oxide-semiconductor structure [J]. Nano Letters. 2011, 11(10): 4256-4260.

【112】Hou Y, Renwick P, Liu B, et al. Room temperature plasmonic lasing in a continuous wave operation mode from an InGaN/GaN single nanorod with a low threshold [J]. Scientific Reports. 2015, 4(1): 5014.

【113】Liu B, Smith R M, Athanasiou M, et al. Temporally and spatially resolved photoluminescence investigation of (112 -2) semi-polar InGaN/GaN multiple quantum Wells grown on nanorod templates [J]. Applied Physics Letters. 2014, 105(26): 261103.

【114】Chen G N. McGuckin T, Hawley C J, et al. Subsurface imaging of coupled carrier transport in GaAs/AlGaAs core-shell nanowires [J]. Nano Letters. 2015, 15(1): 75-79.

【115】Huang C, Sun W Z, Fan Y B, et al. Formation of lead halide perovskite based plasmonic nanolasers and nanolaser arrays by tailoring the substrate [J]. ACS Nano. 2018, 12(4): 3865-3874.

【116】Stranks S D, Snaith H J. Metal-halide perovskites for photovoltaic and light-emitting devices [J]. Nature Nanotechnology. 2015, 10(5): 391-402.

【117】Sutherland B R, Hoogland S, Adachi M M, et al. Perovskite thin films via atomic layer deposition [J]. Advanced Materials. 2015, 27(1): 53-58.

【118】Sutherland B R, Sargent E H. Perovskite photonic sources [J]. Nature Photonics. 2016, 10(5): 295-302.

【119】Veldhuis S A, Boix P P, Yantara N, et al. Perovskite materials for light-emitting diodes and lasers [J]. Advanced Materials. 2016, 28(32): 6804-6834.

【120】Yu H C, Ren K K, Wu Q, et al. Organic-inorganic perovskite plasmonic nanowire lasers with a low threshold and a good thermal stability [J]. Nanoscale. 2016, 8(47): 19536-19540.

【121】Zhang Q, Su R, Du W N, et al. Advances in small perovskite-based lasers [J]. Small Methods. 2017, 1(9): 1700163.

【122】McPeak K M, Jayanti S V, Kress S J P, et al. Plasmonic films can easily be better: rules and recipes [J]. ACS Photonics. 2015, 2(3): 326-333.

【123】Varytis P, Busch K. Negative asymmetry parameter in plasmonic core-shell nanoparticles [J]. Optics Express. 2020, 28(2): 1714-1721.

【124】Lai S M, Huang Z W, Wang Y J, et al. Simulation and analysis of local surface plasmon resonance of Ag nanostructures [J]. Laser & Optoelectronics Progress. 2018, 55(12): 122601.
赖淑妹, 黄志伟, 王仰江, 等. Ag纳米结构局域表面等离激元共振模拟与分析 [J]. 激光与光电子学进展. 2018, 55(12): 122601.

【125】Tohari M M, Lyras A. AlSalhi M S. A novel metal nanoparticles-graphene nanodisks-quantum dots hybrid-system-based spaser [J]. Nanomaterials. 2020, 10(3): 416.

【126】Warnakula T, Gunapala S D, Stockman M I, et al. Cavity quantum electrodynamic analysis of spasing in nanospherical dimers [J]. Physical Review B. 2019, 100(8): 085439.

【127】Ning C Z. Semiconductor nanolasers and the size-energy-efficiency challenge: a review [J]. Advanced Photonics. 2019, 1(1): 014002.

【128】Wang L W, Qu J L, Song J, et al. A novel plasmonic nanolaser based on fano resonances with super low threshold [J]. Plasmonics. 2017, 12(4): 1145-1151.

【129】Chandrasekar R, Wang Z X, Meng X G, et al. Lasing action with gold nanorod hyperbolic metamaterials [J]. ACS Photonics. 2017, 4(3): 674-680.

【130】Galanzha E I, Weingold R, Nedosekin D A, et al. Spaser as abiological probe [J]. Nature Communications. 2017, 8(1): 15528.

【131】Pan S H, Deka S S, El Amili A, et al. Nanolasers: second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures [J]. Progress in Quantum Electronics. 2018, 59: 1-18.

【132】Cheng C W, Liao Y J, Liu C Y, et al. Epitaxial aluminum-on-sapphire films as a plasmonic material platform for ultraviolet and full visible spectral regions [J]. ACS Photonics. 2018, 5(7): 2624-2630.

【133】Chung Y C, Cheng P J, Chou Y H, et al. Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers [J]. Scientific Reports. 2017, 7(1): 39813.

【134】Liu S L, Sheng B W, Wang X Q, et al. Molecular beam epitaxy of single-crystalline aluminum film for low threshold ultraviolet plasmonic nanolasers [J]. Applied Physics Letters. 2018, 112(23): 231904.

【135】AlOtaibi B, Fan S Z, Wang D F, et al. Wafer-level artificial photosynthesis for CO2 reduction into CH4 and CO using GaN nanowires [J]. ACS Catalysis. 2015, 5(9): 5342-5348.

【136】Kibria M G. Nguyen H P T, Cui K, et al. One-step overall water splitting under visible light using multiband InGaN/GaN nanowire heterostructures [J]. ACS Nano. 2013, 7(9): 7886-7893.

【137】Kulriya P K, Singh V N, Agarwal D C, et al. Localized surface plasmon resonance studies on Pd/C nano-composite system: effect of metal concentration and annealing temperature [J]. Journal of Nanoscience and Nanotechnology. 2020, 20(6): 3859-3865.

【138】Jablan M, Buljan H, Soljacic M. Plasmonics in graphene at infrared frequencies [J]. Physical Review B. 2009, 80(24): 245435.

【139】Chen J N, Badioli M, Alonso-González P, et al. Optical nano-imaging of gate-tunable graphene plasmons [J]. Nature. 2012, 487(7405): 77-81.

【140】Khrapach I, Withers F, Bointon T H, et al. Novel highly conductive and transparent graphene-based conductors [J]. Advanced Materials. 2012, 24(21): 2844-2849.

【141】Apalkov V, Stockman M I. Proposed graphene nanospaser [J]. Light: Science & Applications. 2014, 3(7): e191.

【142】Graphene plasmonics: challenges and opportunities [J]. ACS Photonics. 2014, 1(3): 135-152.

【143】Rupasinghe C, Rukhlenko I D, Premaratne M. Spaser made of graphene and carbon nanotubes [J]. ACS Nano. 2014, 8(3): 2431-2438.

【144】Zolotovskii I O, Dadoenkova Y S, Moiseev S G, et al. Plasmon-polariton distributed-feedback laser pumped by a fast drift current in graphene [J]. Physical Review A. 2018, 97(5): 053828.

【145】Naik G V, Kim J, Boltasseva A. Oxides and nitrides as alternative plasmonic materials in the optical range[Invited] [J]. Optical Materials Express. 2011, 1(6): 1090-1099.

【146】Naik G V, Schroeder J, Ni X J, et al. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths [J]. Optical Materials Express. 2012, 3(10): 1658-1659.

【147】Wu Z Y, Chen J, Mi Y, et al. All-inorganic CsPbBr3 nanowire based plasmonic lasers [J]. Advanced Optical Materials. 2018, 6(22): 1800674.

【148】Yang A K, Wang D Q, Wang W J, et al. Coherent light sources at the nanoscale [J]. Annual Review of Physical Chemistry. 2017, 68(1): 83-99.

【149】Meng X G, Kildishev A V, Fujita K, et al. Wavelength-tunable spasing in the visible [J]. Nano Letters. 2013, 13(9): 4106-4112.

【150】Chou Y H, Hong K B, Chang C T, et al. Ultracompact pseudowedge plasmonic lasers and laser arrays [J]. Nano Letters. 2018, 18(2): 747-753.

【151】MacDonald K F, Samson Z L, Stockman M I, et al. Ultrafast active plasmonics [J]. Nature Photonics. 2009, 3(1): 55-58.

【152】Hill M T, Gather M C. Advances in small lasers [J]. Nature Photonics. 2014, 8(12): 908-918.

【153】Ding K, Ning C Z. Metallic subwavelength-cavity semiconductor nanolasers [J]. Light: Science & Applications. 2012, 1(7): e20.

【154】Hill M T. Marell M J H, Leong E S P, et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides [J]. Optics Express. 2009, 17(13): 11107-11112.

【155】Ma R M, Oulton R F, Sorger V J, et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection [J]. Nature Materials. 2011, 10(2): 110-113.

【156】Hinke Schokker A, van Riggelen F, Hadad Y, et al. Systematic study of the hybrid plasmonic-photonic band structure underlying lasing action of diffractive plasmon particle lattices [J]. Physical Review B. 2017, 95(8): 14.

【157】Yang A K, Li Z Y, Knudson M P, et al. Unidirectional lasing from template-stripped two-dimensional plasmonic crystals [J]. ACS Nano. 2015, 9(12): 11582-11588.

【158】Lheureux G, Azzini S, Symonds C, et al. Polarization-controlled confined Tamm plasmon lasers [J]. ACS Photonics. 2015, 2(7): 842-848.

【159】Li Y, Liu B, Zhang R, et al. Investigation of surface-plasmon coupled red light emitting InGaN/GaN multi-quantum well with Ag nanostructures coated on GaN surface [J]. Journal of Applied Physics. 2015, 117(15): 153103.

【160】Zhang D K, Chen S J, Huang Y Z, et al. Surface-plasmon-enhanced lasing emission based on polymer distributed feedback laser [J]. Journal of Applied Physics. 2015, 117(2): 023106.

【161】Keshmarzi E K, Niall Tait R, Berini P. Single-mode surface plasmon distributed feedback lasers [J]. Nanoscale. 2018, 10(13): 5914-5922.

引用该论文

Zhi Ting,Tao Tao,Liu Bin,Zhang Rong. Surface Plasmon Semiconductor Nanolaser[J]. Chinese Journal of Lasers, 2020, 47(7): 0701010

智婷,陶涛,刘斌,张荣. 表面等离激元半导体纳米激光器[J]. 中国激光, 2020, 47(7): 0701010

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF