首页 > 论文 > 激光与光电子学进展 > 57卷 > 22期(pp:222801--1)

基于改进简单线性迭代聚类算法的遥感影像超像素分割

Super-Pixel Segmentation of Remote Sensing Image Based on Improved Simple Linear Iterative Clustering Algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

使用简单线性迭代聚类(SLIC)算法对遥感影像进行超像素分割时,存在运行时间长与边缘贴合度差的问题,因此,提出了一种基于改进SLIC的遥感图像超像素分割算法。首先,改进了初始种子点的初始化方式,消除了随机分配造成的影响;其次,在每次迭代后引入滤波操作,去除超像素内与聚类中心在颜色空间上差异较大的像素点,用剩余的像素点更新聚类中心;最后,用改进的均值计算公式进行迭代以实现超像素分割。在Python环境下的实验结果表明,在超像素个数相同的情况下,相比经典的SLIC算法,本算法在相同数据集中的分割误差率降低了7.4%、分割精度提高了1.4%,可在有效提高边缘轮廓贴合度的同时降低算法的计算复杂度。

Abstract

When using simple linear iterative clustering (SLIC) algorithm for super-pixel segmentation of remote sensing images, there are problems of long running time and poor edge fitting. Therefore, a super-pixel segmentation algorithm of remote sensing image based on improved SLIC is proposed in this paper. First, the initialization method of initial seed points is improved to eliminate the influence of random distribution. Second, after each iteration, a filtering operation is introduced to remove pixels in the super-pixel that are significantly different from the clustering center in color space, and the clustering center is updated with the remaining pixel points. Finally, the super-pixel segmentation is realized by iteration with the improved mean value calculation formula. The experimental results in the Python environment show that in the case of the same number of super pixels, compared with classic SLIC algorithm, this algorithm reduces the segmentation error rate by 7.4%, improves the segmentation accuracy by 1.4%. It can effectively improve the fit of the edge contour and reduce the computational complexity of the algorithm.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:P237

DOI:10.3788/LOP57.222801

所属栏目:遥感与传感器

基金项目:国家自然科学基金、甘肃省科技计划、国家市场监督管理总局科技计划、甘肃省教育厅科技项目;

收稿日期:2020-03-16

修改稿日期:2020-04-20

网络出版日期:2020-11-01

作者单位    点击查看

任欣磊:兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
王阳萍:兰州交通大学电子与信息工程学院, 甘肃 兰州 730070兰州交通大学计算机科学与技术国家级实验教学示范中心, 甘肃 兰州 730070甘肃省人工智能与图形图像处理工程研究中心, 甘肃 兰州 730070甘肃省轨道交通装备系统动力学与可靠性重点实验室, 甘肃 兰州 730070

联系人作者:任欣磊(121931236@qq.com)

备注:国家自然科学基金、甘肃省科技计划、国家市场监督管理总局科技计划、甘肃省教育厅科技项目;

【1】Li P, Yang Y, Fang T. A fast superpixel algorithm with biased-clustering using visual saliency [J]. Journal of Xi''''an Jiaotong University. 2015, 49(1): 112-117, 138.
李鹏, 杨旸, 方涛. 应用视觉显著性的快速有偏聚类超像素算法 [J]. 西安交通大学学报. 2015, 49(1): 112-117, 138.

【2】Luo X G, Lü J R, Peng Z M. Recent research progress of superpixel segmentation and evaluation [J]. Laser & Optoelectronics Progress. 2019, 56(9): 090005.
罗学刚, 吕俊瑞, 彭真明. 超像素分割及评价的最新研究进展 [J]. 激光与光电子学进展. 2019, 56(9): 090005.

【3】Ren X, Malik J. Learning a classification model for segmentation . [C]//Proceedings Ninth IEEE International Conference on Computer Vision, October 13-16, 2003, Nice, France. New York: IEEE. 2003, 10-17.

【4】Wang S, Lu H, Yang F, et al. Superpixel tracking . [C]//2011 International Conference on Computer Vision, November 6-13, 2011, Barcelona, Spain. New York: IEEE. 2011, 1323-1330.

【5】Yu Q L, Yang T H, Tang S B, et al. The 3D reconstruction method for quasi-brittle material structure and application [J]. Engineering Mechanics. 2015, 32(11): 51-62, 114.
于庆磊, 杨天鸿, 唐世斌, 等. 基于CT的准脆性材料三维结构重建及应用研究 [J]. 工程力学. 2015, 32(11): 51-62, 114.
Yu Q L, Yang T H, Tang S B, et al. The 3D reconstruction method for quasi-brittle material structure and application [J]. Engineering Mechanics. 2015, 32(11): 51-62, 114.
于庆磊, 杨天鸿, 唐世斌, 等. 基于CT的准脆性材料三维结构重建及应用研究 [J]. 工程力学. 2015, 32(11): 51-62, 114.

【6】Comaniciu D, Meer P. Mean Shift: a robust approach toward feature space analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002, 24(5): 603-619.

【7】Shen J B, Hao X P, Liang Z Y, et al. Real-time superpixel segmentation by DBSCAN clustering algorithm [J]. IEEE Transactions on Image Processing. 2016, 25(12): 5933-5942.Shen J B, Hao X P, Liang Z Y, et al. Real-time superpixel segmentation by DBSCAN clustering algorithm [J]. IEEE Transactions on Image Processing. 2016, 25(12): 5933-5942.

【8】Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2012, 34(11): 2274-2282.

【9】Kanungo T, Mount D M, Netanyahu N S, et al. An efficient K-means clustering algorithm: analysis and implementation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002, 24(7): 881-892.

【10】Achanta R, Süsstrunk S. Superpixels and polygons using simple non-iterative clustering . [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE. 2017, 4895-4904.

【11】Wu C, Zhang L, Zhang H W, et al. Improved superpixel-based fast fuzzy C-means clustering for image segmentation . [C]//2019 IEEE International Conference on Image Processing (ICIP), September 22-25, 2019, Taipei, Taiwan, China. New York: IEEE. 2019, 1455-1459.

【12】Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1991, 13(6): 583-598.

【13】Lei T, Jia X H, Liu T L, et al. Adaptive morphological reconstruction for seeded image segmentation [J]. IEEE Transactions on Image Processing. 2019, 28(11): 5510-5523.

【14】Lei T, Zhang Y N, Wang Y, et al. A conditionally invariant mathematical morphological framework for color images [J]. Information Sciences. 2017, 387: 34-52.

【15】Levinshtein A, Stere A, Kutulakos K N, et al. TurboPixels: fast superpixels using geometric flows [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2009, 31(12): 2290-2297.

【16】Gong Y J, Zhou Y C. Differential evolutionary superpixel segmentation [J]. IEEE Transactions on Image Processing. 2018, 27(3): 1390-1404.

【17】Wang H, Shen J B, Yin J B, et al. Adaptive nonlocal random walks for image superpixel segmentation [J]. IEEE Transactions on Circuits and Systems for Video Technology. 2020, 30(3): 822-834.

【18】Lu R R, Zhu F, Wu Q X, et al. A fast segmenting method for scenes with stacked plate-shaped objects [J]. Acta Optica Sinica. 2019, 39(4): 0412003.
鲁荣荣, 朱枫, 吴清潇, 等. 一种板型物体混叠场景的快速分割算法 [J]. 光学学报. 2019, 39(4): 0412003.

【19】Shi J B, Malik J. Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000, 22(8): 888-905.

【20】Moore A P. Prince S J D, Warrell J, et al. Superpixel lattices . [C]//2008 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2008, Anchorage, AK, USA. New York: IEEE. 2008, 1-8.

【21】Liu M Y, Tuzel O, Ramalingam S, et al. Entropy rate superpixel segmentation . [C]//Proceedings of 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 20-25, 2011, Colorado Springs, USA. New York: IEEE. 2011, 978: 97-104.

【22】Shi Y X, Chen C. Non-rigid registration segmentation algorithm based on optimal Atlas multi-model image [J]. Acta Optica Sinica. 2019, 39(4): 0410002.
石跃祥, 陈才. 基于最优Atlas多模态图像的非刚性配准分割算法 [J]. 光学学报. 2019, 39(4): 0410002.

【23】Guo W, Li H D, Xing Y Z. An adaptive multiphase image segmentation algorithm based on SLIC [J]. Computer Engineering & Science. 2018, 40(8): 1459-1467.
郭伟, 李红达, 邢宇哲. 基于SLIC的自适应多主体图像分割算法 [J]. 计算机工程与科学. 2018, 40(8): 1459-1467.
Guo W, Li H D, Xing Y Z. An adaptive multiphase image segmentation algorithm based on SLIC [J]. Computer Engineering & Science. 2018, 40(8): 1459-1467.
郭伟, 李红达, 邢宇哲. 基于SLIC的自适应多主体图像分割算法 [J]. 计算机工程与科学. 2018, 40(8): 1459-1467.

【24】Wang J, Wang X. VCells: simple and efficient superpixels using edge-weighted centroidal Voronoi tessellations [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2012, 34(6): 1241-1247.

引用该论文

Ren Xinlei,Wang Yangping. Super-Pixel Segmentation of Remote Sensing Image Based on Improved Simple Linear Iterative Clustering Algorithm[J]. Laser & Optoelectronics Progress, 2020, 57(22): 222801

任欣磊,王阳萍. 基于改进简单线性迭代聚类算法的遥感影像超像素分割[J]. 激光与光电子学进展, 2020, 57(22): 222801

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF