首页 > 论文 > 中国激光 > 47卷 > 7期(pp:701004--1)

胶质量子点激光器及片上集成 (特邀综述)

Colloidal Quantum Dot Lasers and On-Chip Integration (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

胶质量子点作为一种半导体纳米晶体,具有量子产率高(约为100%)、辐射波长可调、性质稳定、折射率较高、可溶液处理和制作成本低廉等优点,被广泛用作微纳激光器的增益材料。基于胶质量子点的纳米尺寸(2~20 nm)和可溶液处理的性质,胶质量子点可以通过自组装的方式密集堆积形成高折射率微纳结构。为此,从胶质量子点激光器谐振腔的制备方面,总结了三类常见的胶质量子点微纳激光器,并对各自的特点进行了详细的分析。此外,还介绍了胶质量子点激光器与波导的片上集成,并着重介绍了模板辅助填充法这一集成方法。最后对胶质量子点激光器及片上集成在集成光子回路领域的发展进行了展望。

Abstract

As semiconductor nanocrystals, colloidal quantum dots (CQDs) are widely used as gain materials for micro/nanoscale lasers owing to their advantages of high quantum yields (~100%), tunable emission wavelengths, excellent stability, high refractive index, solution processability, and low-cost synthesis. Based on nanoscale sizes (2--20 nm) and solution processability, CQDs can construct high refractive index micro/nanoscale structures through self-assembly methods. Here, three kinds of CQD micro/nanoscale lasers are summarized based on manufacturing methods of CQD resonators, and their characteristics are discussed in details. In addition, the on-chip integrations of CQD lasers and waveguides are also introduced. Finally, the outlook for the development of CQD lasers and its on-chip integration in photonic integrated circuits (PICs) is provided.

广告组5 - 光束分析仪
补充资料

中图分类号:TN248

DOI:10.3788/CJL202047.0701004

所属栏目:“半导体激光器”专题

基金项目:国家重点研发计划、国家自然科学基金、北京市自然科学基金;

收稿日期:2020-03-07

修改稿日期:2020-04-13

网络出版日期:2020-07-01

作者单位    点击查看

刘慧:北京大学物理学院人工微结构和介观物理国家重点实验室, 北京 100871
龚旗煌:北京大学物理学院人工微结构和介观物理国家重点实验室, 北京 100871北京大学纳光电子前沿科学中心&量子物质科学协同创新中心, 北京 100871山西大学极端光学协同创新中心, 山西 太原 030006
陈建军:北京大学物理学院人工微结构和介观物理国家重点实验室, 北京 100871北京大学纳光电子前沿科学中心&量子物质科学协同创新中心, 北京 100871山西大学极端光学协同创新中心, 山西 太原 030006

联系人作者:陈建军(jjchern@pku.edu.cn)

备注:国家重点研发计划、国家自然科学基金、北京市自然科学基金;

【1】Zhang C, Zou C L, Zhao Y, et al. Organic printed photonics: from microring lasers to integrated circuits [J]. Science Advances. 2015, 1(8): e1500257.

【2】Duan X F, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers [J]. Nature. 2003, 421(6920): 241-245.

【3】Gather M C, Yun S H. Single-cell biological lasers [J]. Nature Photonics. 2011, 5(7): 406-410.

【4】Fan F, Turkdogan S, Liu Z C, et al. A monolithic white laser [J]. Nature Nanotechnology. 2015, 10(9): 796-803.

【5】Zhao J Y, Yan Y L, Gao Z H, et al. Full-color laser displays based on organic printed microlaser arrays [J]. Nature Communications. 2019, 10(1): 870.

【6】Miller D A B. Device requirements for optical interconnects to silicon chips [J]. Proceedings of the IEEE. 2009, 97(7): 1166-1185.

【7】Smit M, van der Tol J, Hill M. Moore''''s law in photonics [J]. Laser & Photonics Reviews. 2012, 6(1): 1-13.

【8】Kagan C R, Murray C B. Charge transport in strongly coupled quantum dot solids [J]. Nature Nanotechnology. 2015, 10(12): 1013-1026.

【9】Shirasaki Y, Supran G J, Bawendi M G, et al. Emergence of colloidal quantum-dot light-emitting technologies [J]. Nature Photonics. 2013, 7(1): 13-23.

【10】Kagan C R, Lifshitz E, Sargent E H, et al. 353(6302): aac5523 . 2016.

【11】Liu Z, Lin F Y, Gao M, et al. Effect of CdSe quantum dot sensitization on GaAs luminescence characteristics [J]. Chinese Journal of Lasers. 2019, 46(8): 0811002.
刘展, 林逢源, 高美, 等. CdSe量子点敏化对GaAs发光特性的影响 [J]. 中国激光. 2019, 46(8): 0811002.

【12】Kim J Y, Voznyy O, Zhitomirsky D, et al. 25th anniversary article. Colloidal quantum dot materials and devices: a quarter-century of advances [J]. Advanced Materials. 2013, 25(36): 4986-5010.

【13】Yang J, Choi M K, Kim D H, et al. Designed assembly and integration of colloidal nanocrystals for device applications [J]. Advanced Materials. 2016, 28(6): 1176-1207.

【14】Rong K X, Liu H, Shi K B, et al. Pattern-assisted stacking colloidal quantum dots for photonic integrated circuits [J]. Nanoscale. 2019, 11(29): 13885-13893.

【15】Rong K X, Sun C W, Shi K B, et al. Room-temperature planar lasers based on water-dripping microplates of colloidal quantum dots [J]. ACS Photonics. 2017, 4(7): 1776-1784.

【16】Adachi M M, Fan F J, Sellan D P, et al. Microsecond-sustained lasing from colloidal quantum dot solids [J]. Nature Communications. 2015, 6: 8694.

【17】Lin C H, Zeng Q J, Lafalce E, et al. Large-scale robust quantum dot microdisk lasers with controlled high quality cavity modes [J]. Advanced Optical Materials. 2017, 5(9): 1700011.

【18】Xie W Q, St?ferle T, Rainò G, et al. On-chip integrated quantum-dot-silicon-nitride microdisk lasers [J]. Advanced Materials. 2017, 29(16): 1604866.

【19】Gao Y. Tobing L Y M, Kiffer A, et al. Azimuthally polarized, circular colloidal quantum dot laser beam enabled by a concentric grating [J]. ACS Photonics. 2016, 3(12): 2255-2261.

【20】Stasio F D, Polovitsyn A, Angeloni I, et al. Broadband amplified spontaneous emission and random lasing from wurtzite CdSe/CdS “giant-shell” nanocrystals [J]. ACS Photonics. 2016, 3(11): 2083-2088.

【21】Yao Y C, Yang Z P, Hwang J M, et al. Coherent and polarized random laser emissions from colloidal CdSe/ZnS quantum dots plasmonically coupled to ellipsoidal Ag nanoparticles [J]. Advanced Optical Materials. 2017, 5(3): 1-11.

【22】Wang Y, Ta V D, Leck K S, et al. Robust whispering-gallery-mode microbubble lasers from colloidal quantum dots [J]. Nano Letters. 2017, 17(4): 2640-2646.

【23】Lin Y, Zhong Y, Liu H T. Modification of single photon fluorescence emission of single quantum dots with different substrates [J]. Chinese Journal of Lasers. 2018, 45(6): 0606005.
林雨, 钟莹, 刘海涛. 不同基片对单量子点单光子荧光发射的调控 [J]. 中国激光. 2018, 45(6): 0606005.

【24】Kress S J P, Cui J, Rohner P, et al. A customizable class of colloidal-quantum-dot spasers and plasmonic amplifiers [J]. Science Advances. 2017, 3(9): e1700688.

【25】Zhu Y P, Xie W Q, Bisschop S, et al. On-chip single-mode distributed feedback colloidal quantum dot laser under nanosecond pumping [J]. ACS Photonics. 2017, 4(10): 2446-2452.

【26】Lafalce E, Zeng Q J, Lin C H, et al. Robust lasing modes in coupled colloidal quantum dot microdisk pairs using a non-Hermitian exceptional point [J]. Nature Communications. 2019, 10(1): 1-8.

【27】Le Feber B. Prins F, de Leo E, et al. Colloidal-quantum-dot ring lasers with active color control [J]. Nano Letters. 2018, 18(2): 1028-1034.

【28】Dang C, Lee J, Breen C, et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films [J]. Nature Nanotechnology. 2012, 7(5): 335-339.

【29】Fan F J, Voznyy O, Sabatini R P, et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy [J]. Nature. 2017, 544(7648): 75-79.

【30】Lim J, Park Y, Klimov V I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping [J]. Nature Materials. 2018, 17(1): 42-49.

【31】Gollner C, Ziegler J, Protesescu L, et al. Random lasing with systematic threshold behavior in films of CdSe/CdS core/thick-shell colloidal quantum dots [J]. ACS Nano. 2015, 9(10): 9792-9801.

【32】Liao C, Xu R L, Xu Y Q, et al. Ultralow-threshold single-mode lasing from phase-pure CdSe/CdS core/shell quantum dots [J]. Journal of Physical Chemistry Letters. 2016, 7(24): 4968-4976.

【33】Wang Y, Fong K E, Yang S C, et al. Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high-Q microlasers [J]. Laser & Photonics Reviews. 2015, 9(5): 507-516.

【34】Sch?fer J, Mondia J P, Sharma R, et al. Quantum dot microdrop laser [J]. Nano Letters. 2008, 8(6): 1709-1712.

【35】Nandwana V, Subramani C, Yeh Y, et al. Direct patterning of quantum dot nanostructures via electron beam lithography [J]. Journal of Materials Chemistry. 2011, 21(42): 16859-16862.

【36】Rong K X, Gan F Y, Shi K B, et al. Configurable integration of on-chip quantum dot lasers and subwavelength plasmonic waveguides [J]. Advanced Materials. 2018, 30(21): 1706546.

【37】Huang C, Zhang C, Xiao S M, et al. Ultrafast control of vortex microlasers [J]. Science. 2020, 367(6481): 1018-1021.

【38】Tang S J, Liu Z H, Qian Y J, et al. A tunable optofluidic microlaser in a photostable conjugated polymer [J]. Advanced Materials. 2018, 30(50): e1804556.

引用该论文

Liu Hui,Gong Qihuang,Chen Jianjun. Colloidal Quantum Dot Lasers and On-Chip Integration[J]. Chinese Journal of Lasers, 2020, 47(7): 0701004

刘慧,龚旗煌,陈建军. 胶质量子点激光器及片上集成[J]. 中国激光, 2020, 47(7): 0701004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF