首页 > 论文 > 光学学报 > 40卷 > 20期(pp:2036001--1)

基于被动全光同步的高效率中红外差频产生技术研究

Efficient Mid-Infrared Difference-Frequency Generation Technology Based on Passive All-Optical Synchronization

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

实验探究了基于被动全光同步的中红外差频产生技术,采用主-从注入锁定实现了全保偏掺镱和掺铒锁模光纤激光器的同步脉冲输出,并经过级联光纤放大在PPLN晶体中获得了中心波长为3071 nm的中红外皮秒脉冲,最大泵浦光转换效率为68.3%,峰值平均功率达1.36 W。研究发现,所使用的同步脉冲诱导差频技术能够显著降低中红外产生的泵浦阈值。此外,得益于脉冲产生、同步与放大全链路的保偏光纤架构,中红外超快光源表现出良好的长期稳定性,平均功率的相对抖动低至0.2%。

Abstract

We have experimentally investigated mid-infrared (MIR) difference-frequency generation (DFG) based on passive all-optical synchronization. Synchronized pulses were obtained by master-slave injection locking between all-polarization-maintaining Yb- and Er-doped fiber lasers, which were amplified by cascaded fiber amplifiers to realize MIR picosecond pulses at 3071 nm within a PPLN crystal. The maximum pump conversion efficiency is 68.3%, and the peak average power reaches 1.36 W. The results show that the synchronous pulse induced DFG can substantially reduce the pump threshold. Additionally, benefiting from the all-polarization-maintaining fiber architecture for the pulse generation, synchronization and amplification, the MIR ultrafast light source exhibits excellent long-term stability with a relative fluctuation of average power as low as 0.2%.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O437

DOI:10.3788/AOS202040.2036001

所属栏目:快报

基金项目:国家重点研发计划、国家自然科学基金、上海市科技创新行动计划;

收稿日期:2020-07-28

修改稿日期:2020-08-31

网络出版日期:2020-10-01

作者单位    点击查看

徐明航:上海理工大学光电信息与计算机工程学院, 上海 200093
武佳美:上海理工大学光电信息与计算机工程学院, 上海 200093
李博文:上海理工大学光电信息与计算机工程学院, 上海 200093
江云峰:上海理工大学光电信息与计算机工程学院, 上海 200093
郝强:上海理工大学光电信息与计算机工程学院, 上海 200093
杨康文:上海理工大学光电信息与计算机工程学院, 上海 200093
黄坤:上海理工大学光电信息与计算机工程学院, 上海 200093
曾和平:上海理工大学光电信息与计算机工程学院, 上海 200093华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062济南量子技术研究院, 山东 济南 250101

联系人作者:黄坤(khuang@usst.edu.cn)

备注:国家重点研发计划、国家自然科学基金、上海市科技创新行动计划;

【1】Timmers H, Kowligy A, Lind A, et al. Molecular fingerprinting with bright, broadband infrared frequency combs [J]. Optica. 2018, 5(6): 727-732.

【2】Schliesser A, Picqué N, H?nsch T W. Mid-infrared frequency combs [J]. Nature Photonics. 2012, 6(7): 440-449.

【3】Malinauskas M, ?ukauskas A, Hasegawa S, et al. Ultrafast laser processing of materials: from science to industry [J]. Light: Science & Applications. 2016, 5(8): e16133.

【4】Serebryakov V A, Boǐko E V, Petrishchev N N, et al. Medical applications of mid-IR lasers. Problems and prospects [J]. Journal of Optical Technology. 2010, 77(1): 6-17.

【5】Liu K, Liu J, Shi H X, et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power [J]. Optics Express. 2014, 22(20): 24384-24391.

【6】Zhu L, Wang L L, Dong X Y, et al. Mid-infrared supercontinuum generation with highly germanium-doped silica fiber [J]. Acta Optica Sinica. 2016, 36(3): 0319001.
朱磊, 王鹿鹿, 董新永, 等. 基于高掺锗石英光纤的中红外超连续谱产生 [J]. 光学学报. 2016, 36(3): 0319001.

【7】Li Y, Ding Z W, Liu P, et al. Widely tunable, continuous-wave, intra-cavity optical parametric oscillator based on an Yb-doped fiber laser [J]. Optics Letters. 2018, 43(21): 5391-5394.

【8】Li H N, Zhang D C, Zhu J F, et al. Nanosecond mid-infrared tunable parametric laser [J]. Acta Optica Sinica. 2019, 39(11): 1114002.
李浩宁, 张大成, 朱江峰, 等. 纳秒中红外可调谐参量激光研究 [J]. 光学学报. 2019, 39(11): 1114002.

【9】Ma J, Qin Z P, Xie G Q, et al. Review of mid-infrared mode-locked laser sources in the 2.0 μm-3.5 μm spectral region [J]. Applied Physics Reviews. 2019, 6(2): 021317.

【10】Hu M L, Cai Y. Research progress on mid-infrared ultrafast fiber laser [J]. Chinese Journal of Lasers. 2020, 47(5): 0500009.
胡明列, 蔡宇. 中红外波段超快光纤激光器研究进展 [J]. 中国激光. 2020, 47(5): 0500009.

【11】Dunn M H, Ebrahimzadeh M. Parametric generation of tunable light from continuous-wave to femtosecond pulses [J]. Science. 1999, 286(5444): 1513-1518.

【12】Erny C, Moutzouris K, Biegert J, et al. Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 μm from a compact fiber source [J]. Optics Letters. 2007, 32(9): 1138-1140.

【13】Soboń G, Martynkien T, Mergo P, et al. High-power frequency comb source tunable from 2.7 to 4.2 μm based on difference frequency generation pumped by an Yb-doped fiber laser [J]. Optics Letters. 2017, 42(9): 1748-1751.

【14】Xuan H, Zou Y, Wang S, et al. Generation of ultrafast mid-infrared laser by DFG between two actively synchronized picosecond lasers in a MgO∶PPLN crystal [J]. Applied Physics B. 2012, 108(3): 571-575.

【15】Murray R T, Runcorn T H. Kelleher E J R, et al. Highly efficient mid-infrared difference-frequency generation using synchronously pulsed fiber lasers [J]. Optics Letters. 2016, 41(11): 2446-2449.

【16】Yue W J, Ding Y C, Wu B, et al. High-power mid-infrared picosecond pulse bunch generation through difference frequency generation [J]. Optics Letters. 2020, 45(2): 383-386.

【17】Kong C, Pilger C, Hachmeister H, et al. High-contrast, fast chemical imaging by coherent Raman scattering using a self-synchronized two-colour fibre laser [J]. Light: Science & Applications. 2020, 9(1): 25.

【18】Zeng J, Li B W, Hao Q, et al. Passively synchronized dual-color mode-locked fiber lasers based on nonlinear amplifying loop mirrors [J]. Optics Letters. 2019, 44(20): 5061-5064.

【19】Jiang Y F, Wu J M, Hao Q, et al. Experimental study on all-polarization-maintaining passive synchronization for dual-color mode-locked fiber lasers [J]. Acta Optica Sinica. 2020, 40(9): 0936001.
江云峰, 武佳美, 郝强, 等. 全保偏被动同步的双色锁模光纤激光器的实验研究 [J]. 光学学报. 2020, 40(9): 0936001.

【20】Ashik A S, Tidemand-Lichtenberg P, Rodenko O, et al. Pulse-to-pulse spectral noise in a spontaneous parametric down conversion light source [J]. Optics Letters. 2020, 45(10): 2772-2775.

引用该论文

Xu Minghang,Wu Jiamei,Li Bowen,Jiang Yunfeng,Hao Qiang,Yang Kangwen,Huang Kun,Zeng Heping. Efficient Mid-Infrared Difference-Frequency Generation Technology Based on Passive All-Optical Synchronization[J]. Acta Optica Sinica, 2020, 40(20): 2036001

徐明航,武佳美,李博文,江云峰,郝强,杨康文,黄坤,曾和平. 基于被动全光同步的高效率中红外差频产生技术研究[J]. 光学学报, 2020, 40(20): 2036001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF