首页 > 论文 > 激光与光电子学进展 > 57卷 > 22期(pp:221020--1)

基于非线性相关信息熵的SAR图像多分辨率选择及目标识别

Multi-Resolution Selection of SAR Images and Target Recognition Based on Nonlinear Correlation Information Entropy

何洁   陈欣  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对合成孔径雷达(SAR)目标识别,提出一种联合非线性相关信息熵(NCIE)和多分辨表示的方法。采用NCIE对原始SAR图像的多分辨率表示进行选择,获得内在相关较强的若干分辨率。然后,采用联合稀疏表示对选取的多分辨率样本进行联合表征和分类。实验中,以MSTAR数据集为基础设计多种操作条件对不同方法进行测试,结果表明了所提方法的有效性。

Abstract

A method to combine nonlinear correlation information entropy (NCIE) and multi-resolution representation is proposed for synthetic aperture radar (SAR) target recognition. NCIE is employed to select the multi-resolution representation of an original SAR image, and several resolutions with strong intrinsic correlation are obtained. Then, the joint sparse representation is used to characterize and classify the selected multi-resolution samples simultaneously. Experiments are conducted in which various operating conditions are employed to test the different methods based on the MSTAR dataset. The experimental results demonstrate the validity of the proposed method.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP753

DOI:10.3788/LOP57.221020

所属栏目:图像处理

基金项目:重庆市教育委员会科学技术研究项目;

收稿日期:2020-03-26

修改稿日期:2020-04-27

网络出版日期:2020-11-01

作者单位    点击查看

何洁:重庆邮电大学移通学院, 重庆 401520
陈欣:重庆邮电大学移通学院, 重庆 401520

联系人作者:何洁(sunflower_xpj@163.com)

备注:重庆市教育委员会科学技术研究项目;

【1】Li L R, Xu X, Dong H, et al. Gaussian mixture model and classification of polarimetric features for SAR images [J]. Acta Optica Sinica. 2019, 39(1): 128002.
李珞茹, 徐新, 董浩, 等. SAR影像极化特征的混合高斯模型与分类 [J]. 光学学报. 2019, 39(1): 128002.

【2】Hu T, Li W H, Qin X X. Semantic segmentation of polarimetric synthetic aperture radar images based on multi-layer deep feature fusion [J]. Chinese Journal of Lasers. 2019, 46(2): 210001.
胡涛, 李卫华, 秦先祥. 基于多层深度特征融合的极化合成孔径雷达图像语义分割 [J]. 中国激光. 2019, 46(2): 210001.

【3】Su Q, Yang J Y, Wang Y P. Synthetic aperture radar image change detection based on intuitionistic fuzzy C-core mean clustering algorithm [J]. Laser & Optoelectronics Progress. 2019, 56(19): 192805.
宿强, 杨景玉, 王阳萍. 基于直觉模糊C核均值聚类算法的合成孔径雷达图像变化检测 [J]. 激光与光电子学进展. 2019, 56(19): 192805.

【4】Li Y Y, Wu H, Chang X L, et al. Multi-view stereo positioning error analysis based on spaceborne optics and SAR images [J]. Acta Optica Sinica. 2018, 38(5): 0528003.
李莹莹, 吴昊, 常学立, 等. 基于星载光学和SAR影像的多视立体定位误差分析 [J]. 光学学报. 2018, 38(5): 0528003.

【5】Zhan Y J, Dai T D, Huang J J, et al. Synthetic aperture radar image filtering based on clustering three-dimensional block-matching [J]. Laser & Optoelectronics Progress. 2018, 55(4): 041004.
詹云军, 代腾达, 黄解军, 等. 基于聚类三维块匹配的合成孔径雷达影像滤波算法 [J]. 激光与光电子学进展. 2018, 55(4): 041004.

【6】El-Darymli K, Gill E W. McGuire P, et al. Automatic target recognition in synthetic aperture radar imagery: a state-of-the-art review [J]. IEEE Access. 2016, 4: 6014-6058.El-Darymli K, Gill E W. McGuire P, et al. Automatic target recognition in synthetic aperture radar imagery: a state-of-the-art review [J]. IEEE Access. 2016, 4: 6014-6058.

【7】Mishra A K, Motaung T. Application of linear and nonlinear PCA to SAR ATR . [C]//2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA), April 21-22, 2015, Pardubice, Czech, Republic. New York: IEEE. 2015, 349-354.

【8】Liu X W, Lei J C, Wu Y P. Synthetic aperture radar target-recognition method based on bidimensional empirical mode decomposition [J]. Laser & Optoelectronics Progress. 2020, 57(4): 041004.
柳小文, 雷军程, 伍雁鹏. 基于二维经验模态分解的合成孔径雷达目标识别方法 [J]. 激光与光电子学进展. 2020, 57(4): 041004.

【9】Cui Z Y, Feng J L, Cao Z J, et al. Target recognition in synthetic aperture radar images via non-negative matrix factorisation [J]. IET Radar, Sonar & Navigation. 2015, 9(9): 1376-1385.Cui Z Y, Feng J L, Cao Z J, et al. Target recognition in synthetic aperture radar images via non-negative matrix factorisation [J]. IET Radar, Sonar & Navigation. 2015, 9(9): 1376-1385.

【10】Dong G G, Kuang G Y, Wang N, et al. SAR target recognition via joint sparse representation of monogenic signal [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2015, 8(7): 3316-3328.Dong G G, Kuang G Y, Wang N, et al. SAR target recognition via joint sparse representation of monogenic signal [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2015, 8(7): 3316-3328.

【11】Ding B Y, Wen G J. Target recognition of SAR images based on multi-resolution representation [J]. Remote Sensing Letters. 2017, 8(11): 1006-1014.

【12】Zhang Z Y. Joint classification of multiresolution representations with discrimination analysis for SAR ATR [J]. Journal of Electronic Imaging. 2018, 27(4): 043030.

【13】Cai D R, Zhang T. SAR target recognition based on joint use of multi-resolution representations [J]. Journal of Electronic Measurement and Instrument. 2018, 32(12): 71-77.
蔡德饶, 张婷. 联合多分辨表示的SAR图像目标识别方法 [J]. 电子测量与仪器学报. 2018, 32(12): 71-77.

【14】Anagnostopoulos G C. SVM-based target recognition from synthetic aperture radar images using target region outline descriptors [J]. Nonlinear Analysis: Theory, Methods & Applications. 2009, 71(12): e2934-e2939.

【15】Xie Q, Zhang H. Multi-level SAR image enhancement based on regularization with application to target recognition [J]. Journal of Electronic Measurement and Instrument. 2018, 32(9): 157-162.
谢晴, 张洪. SAR图像多层次正则化增强及在目标识别中的应用 [J]. 电子测量与仪器学报. 2018, 32(9): 157-162.
Xie Q, Zhang H. Multi-level SAR image enhancement based on regularization with application to target recognition [J]. Journal of Electronic Measurement and Instrument. 2018, 32(9): 157-162.
谢晴, 张洪. SAR图像多层次正则化增强及在目标识别中的应用 [J]. 电子测量与仪器学报. 2018, 32(9): 157-162.

【16】Papson S, Narayanan R M. Classification via the shadow region in SAR imagery [J]. IEEE Transactions on Aerospace and Electronic Systems. 2012, 48(2): 969-980.

【17】Ding B Y, Wen G J, Yu L S, et al. Matching of attributed scattering center and its application to synthetic aperture radar automatic target recognition [J]. Journal of Radars. 2017, 6(2): 157-166.
丁柏圆, 文贡坚, 余连生, 等. 属性散射中心匹配及其在SAR目标识别中的应用 [J]. 雷达学报. 2017, 6(2): 157-166.

【18】Ding B Y, Wen G J, Zhong J R, et al. A robust similarity measure for attributed scattering center sets with application to SAR ATR [J]. Neurocomputing. 2017, 219: 130-143.

【19】Li H. SAR target recognition based on Gaussian mixture modeling of peak features [J]. Journal of Electronic Measurement and Instrument. 2018, 32(8): 103-108.
李辉. 基于峰值特征高斯混合建模的SAR目标识别 [J]. 电子测量与仪器学报. 2018, 32(8): 103-108.

【20】Chen S Z, Wang H P, Xu F, et al. Target classification using the deep convolutional networks for SAR images [J]. IEEE Transactions on Geoscience and Remote Sensing. 2016, 54(8): 4806-4817.

【21】Du K N, Deng Y K, Wang R, et al. SAR ATR based on displacement- and rotation-insensitive CNN [J]. Remote Sensing Letters. 2016, 7(9): 895-904.

【22】Wagner S A. SAR ATR by a combination of convolutional neural network and support vector machines [J]. IEEE Transactions on Aerospace and Electronic Systems. 2016, 52(6): 2861-2872.

【23】Li A G, Wang B N. The concept of a new nonlinear correlation information entropy and its properties and applications [J]. Information and Control. 2011, 40(3): 401-407, 412.
李爱国, 汪保男. 一种非线性新相关信息熵定义及其性质、应用 [J]. 信息与控制. 2011, 40(3): 401-407, 412.

【24】Wang H D, Yao X. Objective reduction based on nonlinear correlation information entropy [J]. Soft Computing. 2016, 20(6): 2393-2407.

【25】Ji S H, Dunson D, Carin L. Multitask compressive sensing [J]. IEEE Transactions on Signal Processing. 2009, 57(1): 92-106.

引用该论文

He Jie,Chen Xin. Multi-Resolution Selection of SAR Images and Target Recognition Based on Nonlinear Correlation Information Entropy[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221020

何洁,陈欣. 基于非线性相关信息熵的SAR图像多分辨率选择及目标识别[J]. 激光与光电子学进展, 2020, 57(22): 221020

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF