首页 > 论文 > Chinese Optics Letters > 18卷 > 8期(p:080002)

Ferroelectric liquid crystals for fast switchable circular Dammann grating [Invited]

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Diffractive optical elements attract a considerable amount of attention, mainly due to their potential applications in imaging coding, optical sensing, etc. Application of ferroelectric liquid crystals (FLCs) with photo-alignment technology in diffractive optical elements results in a high efficiency and a fast response time. In this study we demonstrate a circular Dammann grating (CDG) with a diffraction efficiency of 84.5%. The achieved response time of 64 μs is approximately two orders of magnitude faster than the existing response time of nematic liquid crystal devices. By applying a low electric field (V = 6 V) to the FLC CDG, it is switched between the eight-order diffractive state and the transmissive diffraction-free state.

中国激光微信矩阵
补充资料

DOI:10.3788/COL202018.080002

所属栏目:Special Issue on Soft-matter Photonics

基金项目:This work was supported by the National Natural Science Foundation of China (Nos. 61405009, 61875004, and 61705067), the Defense Industrial Technology Development Program (No. JCKY2019601C101), and the Shanghai Pujiang Program (16PJ1402200). The contribution of V. Chigrinov and A. Kudreyko was supported by the Russian Science Foundation (No. 20-19-00201).

收稿日期:2020-05-19

录用日期:2020-06-03

网络出版日期:2020-06-30

作者单位    点击查看

郭琦:School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;Beihang University Qingdao Research Institute, Qingdao 266101, China
刘恬:School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;Beihang University Qingdao Research Institute, Qingdao 266101, China
王骁乾:Physics Department, East China University of Science and Technology, Shanghai 200237, China
郑致刚:Physics Department, East China University of Science and Technology, Shanghai 200237, China
Aleksey Kudreyko:Department of Medical Physics and Informatics, Bashkir State Medical University, Ufa 450008, Russia
赵慧洁:School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;Beihang University Qingdao Research Institute, Qingdao 266101, China
V. Chigrinov:School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China;State Key Laboratory on Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Hong Kong 999077, China;Department of Theoretical Physics, Moscow Region State University, Mytishi 141014, Russia
郭海成:State Key Laboratory on Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Hong Kong 999077, China

联系人作者:郭琦(qguo@buaa.edu.cn); 王骁乾(xqwang@ecust.edu.cn);

备注:This work was supported by the National Natural Science Foundation of China (Nos. 61405009, 61875004, and 61705067), the Defense Industrial Technology Development Program (No. JCKY2019601C101), and the Shanghai Pujiang Program (16PJ1402200). The contribution of V. Chigrinov and A. Kudreyko was supported by the Russian Science Foundation (No. 20-19-00201).

【1】D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug and R. G. Beausoleil. Nature. 495, (2013).

【2】H. Chen, Y. Weng, D. Xu, N. V. Tabiryan and S. T. Wu. Opt. Express. 24, (2016).

【3】M. Khorasaninejad and F. Capasso. Science. 358, (2017).

【4】S. V. Serak, D. E. Roberts, J.-Y. Hwang, S. R. Nersisyan, N. V. Tabiryan, T. J. Bunning, D. M. Steeves and B. R. Kimball. J. Opt. Soc. Am. B. 34, (2017).

【5】P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu and Y. Q. Lu. Adv. Mater. 30, (2018).

【6】R. Xu, P. Chen, J. Tang, W. Duan, S.-J. Ge, L.-L. Ma, R.-X. Wu, W. Hu and Y.-Q. Lu. Phys. Rev. Appl. 10, (2018).

【7】P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu and Y.-Q. Lu. ACS Photon. 4, (2017).

【8】K. B. Doh, K. Dobson, T. C. Poon and P. S. Chung. Appl. Opt. 48, (2009).

【9】Y. Shinoda, J. P. Liu, P. S. Chung, K. Dobson, X. Zhou and T. C. Poon. Appl. Opt. 50, (2011).

【10】S. Zhao and P. S. Chung. Opt. Commun. 279, (2007).

【11】Y. Zhang, N. Gao and C. Xie. Appl. Phys. Lett. 100, (2012).

【12】Y. Xu, X. Han, G. Li, J. Liu, K. Xia and J. Li. Opt. Eng. 55, (2016).

【13】F. J. Wen, Z. Chen and P. S. Chung. Appl. Opt. 49, (2010).

【14】F. J. Wen and P. S. Chung. Appl. Opt. 47, (2008).

【15】C. Zhou, J. Jia and L. Liu. Opt. Lett. 28, (2003).

【16】S. Zhao and P. S. Chung. Opt. Lett. 31, (2006).

【17】U. Levy, B. Desiatov, I. Goykhman, T. Nachmias, A. Ohayon and S. E. Meltzer. Opt. Lett. 35, (2010).

【18】I. Moreno, J. A. Davis, D. M. Cottrell, N. Zhang and X. C. Yuan. Opt. Lett. 35, (2010).

【19】D. Luo, X. W. Sun, H. T. Dai and H. V. Demir. Appl. Opt. 50, (2011).

【20】X. Wang, S. Wu, W. Yang, C. Yuan, X. Li, Z. Liu, M. Tseng, V. G. Chigrinov, H. Kwok, D. Shen and Z. Zheng. Polymers (Basel). 9, (2017).

【21】Y. Liu, P. Chen, R. Yuan, C.-Q. Ma, Q. Guo, W. Duan, V. G. Chigrinov, W. Hu and Y.-Q. Lu. Opt. Express. 27, (2019).

【22】Q. Guo, X. Zhao, H. Zhao and V. G. Chigrinov. Opt. Lett. 40, (2015).

【23】Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov and H. S. Kwok. Appl. Phys. Express. 7, (2014).

【24】Q. Guo, K. X. Yan, V. Chigrinov, H. J. Zhao and M. Tribelsky. Crystals. 9, (2019).

【25】E. A. Shteyner, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok and A. D. Afanasyev. Soft Matter. 9, (2013).

【26】W. Hu, A. Kumar Srivastava, X.-W. Lin, X. Liang, Z.-J. Wu, J.-T. Sun, G. Zhu, V. Chigrinov and Y.-Q. Lu. Appl. Phys. Lett. 100, (2012).

【27】F. Fan, L. Yao, X. Wang, L. Shi, A. Srivastava, V. Chigrinov, H.-S. Kwok and S. Wen. Crystals. 7, (2017).

引用该论文

Qi Guo, Tian Liu, Xiaoqian Wang, Zhigang Zheng, Aleksey Kudreyko, Huijie Zhao, V. Chigrinov, Hoi-Sing Kwok, "Ferroelectric liquid crystals for fast switchable circular Dammann grating [Invited]," Chinese Optics Letters 18(8), 080002 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF