首页 > 论文 > Photonics Research > 8卷 > 10期(pp:1613-1623)

Design and analysis of extended depth of focus metalenses for achromatic computational imaging

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Metasurface optics have demonstrated vast potential for implementing traditional optical components in an ultracompact and lightweight form factor. Metasurfaces, however, suffer from severe chromatic aberrations, posing serious limitations on their practical use. Existing approaches for circumventing this involving dispersion engineering are limited to small apertures and often entail multiple scatterers per unit cell with small feature sizes. Here, we present an alternative technique to mitigate chromatic aberration and demonstrate high-quality, full-color imaging using extended depth of focus (EDOF) metalenses and computational reconstruction. Previous EDOF metalenses have relied on cubic phase masks, where the image quality suffers from asymmetric artefacts. Here we demonstrate the use of rotationally symmetric masks, including logarithmic-aspherical, and shifted axicon masks, to mitigate this problem. Our work will inspire further development in achromatic metalenses beyond dispersion engineering and hybrid optical–digital metasurface systems.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.396839

所属栏目:Imaging Systems, Microscopy, and Displays

基金项目:UW Reality Lab; Google10.13039/100006785; Facebook10.13039/100005801; Futurewei; Amazon; Samsung Advanced Institute of Technology10.13039/100014553; National Science Foundation10.13039/100000001;

收稿日期:2020-05-05

录用日期:2020-08-17

网络出版日期:2020-08-17

作者单位    点击查看

Luocheng Huang:Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, USA
James Whitehead:Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, USA
Shane Colburn:Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, USA
Arka Majumdar:Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, USA;Department of Physics, University of Washington, Seattle, Washington 98195, USA

联系人作者:Arka Majumdar(arka@uw.edu)

备注:UW Reality Lab; Google10.13039/100006785; Facebook10.13039/100005801; Futurewei; Amazon; Samsung Advanced Institute of Technology10.13039/100014553; National Science Foundation10.13039/100000001;

【1】Z. SongZ. Song. Handbook of 3D Machine Vision: Optical Metrology and Imaging. : CRC Press, (2013).

【2】F. Mutz, L. P. Veronese, T. Oliveira-Santos, E. de Aguiar, F. A. Auat Cheein and A. Ferreira De Souza. Large-scale mapping in complex field scenarios using an autonomous car. Exp. Syst. Appl. 46, 439-462(2016).

【3】X. Chen, L. Xu, Y. Wang, H. Wang, F. Wang, X. Zeng, Q. Wang and J. Egger. Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display. J. Biomed. Inform. 55, 124-131(2015).

【4】Y. Peng, Q. Fu, F. Heide and W. Heidrich. The diffractive achromat full spectrum computational imaging with diffractive optics. ACM Trans. Graph. 35, (2016).

【5】A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson and A. Majumdar. Low-contrast dielectric metasurface optics. ACS Photonics. 3, 209-214(2016).

【6】A. Arbabi, R. M. Briggs, Y. Horie, M. Bagheri and A. Faraon. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. Opt. Express. 23, 33310-33317(2015).

【7】M. W. FarnM. W. Farn. Binary gratings with increased efficiency. Appl. Opt. 31, 4453-4458(1992).

【8】F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase and C. J. Chang-Hasnain. Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. Opt. Express. 18, 12606-12614(2010).

【9】A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri and A. Faraon. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, (2015).

【10】D. Fattal, J. Li, Z. Peng, M. Fiorentino and R. G. Beausoleil. Flat dielectric grating reflectors with focusing abilities. Nat. Photonics. 4, 466-470(2010).

【11】F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro and F. Capasso. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932-4936(2012).

【12】R. C. Devlin, M. Khorasaninejad, F. Capasso, A. Y. Zhu, W. T. Chen and J. Oh. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 352, 1190-1194(2016).

【13】S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez and R. Menon. Extreme-depth-of-focus imaging with a flat lens. Optica. 7, 214-217(2020).

【14】E. Bayati, R. Pestourie, S. Colburn, Z. Lin, S. G. Johnson and A. Majumdar. Inverse designed metalenses with extended depth of focus. ACS Photonics. 7, 873-878(2020).

【15】X. Luo, Y. Hu, X. Li, Y. Jiang, Y. Wang, P. Dai, Q. Liu, Z. Shu and H. Duan. Integrated metasurfaces with microprints and helicity-multiplexed holograms for real-time optical encryption. Adv. Opt. Mater. 8, (2020).

【16】S. Liang, J. Xie, P. Tang and J. Liu. Large object distance and super-resolution graded-index photonic crystal flat lens. Opt. Express. 27, 9601-9609(2019).

【17】C. Zhang, S. Divitt, Q. Fan, W. Zhu, A. Agrawal, Y. Lu, T. Xu and H. J. Lezec. Low-loss metasurface optics down to the deep ultraviolet region. Light Sci. Appl. 9, (2020).

【18】J. Xie, J. Wang, R. Ge, B. Yan, E. Liu, W. Tan and J. Liu. Multiband super-resolution imaging of graded-index photonic crystal flat lens. J. Phys. D. 51, (2018).

【19】J. Xie, S. Liang, J. Liu, P. Tang and S. Wen. Near-zero-sidelobe optical subwavelength asymmetric focusing lens with dual-layer metasurfaces. Ann. Phys. 532, (2020).

【20】D. U. Yildirim, A. Ghobadi, M. C. Soydan, A. E. Serebryannikov and E. Ozbay. One-way and near-absolute polarization insensitive near-perfect absorption by using an all-dielectric metasurface. Opt. Lett. 45, 2010-2013(2020).

【21】V. N. Le, S. Chen and Z. Fan. Optimized asymmetrical tangent phase mask to obtain defocus invariant modulation transfer function in incoherent imaging systems. Opt. Lett. 39, 2171-2174(2014).

【22】S.-L. Lee, T.-C. Lu, Y.-J. Hung, L.-R. Chen and Z.-T. Huang. Photonic integrated multiwavelength laser arrays: recent progress and perspectives. Appl. Phys. Lett. 116, (2020).

【23】D. Tang, L. Chen and J. Liu. Visible achromatic super-oscillatory metasurfaces for sub-diffraction focusing. Opt. Express. 27, 12308-12316(2019).

【24】E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie and A. Faraon. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica. 3, 628-633(2016).

【25】E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie and A. Faraon. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica. 4, 625-632(2017).

【26】S. Shrestha, A. C. Overvig, M. Lu, A. Stein and N. Yu. Broadband achromatic dielectric metalenses. Light Sci. Appl. 7, (2018).

【27】W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee and F. Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220-226(2018).

【28】M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi and F. Capasso. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17, 1819-1824(2017).

【29】S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan and T. Li. Broadband achromatic optical metasurface devices. Nat. Commun. 8, (2017).

【30】W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani and F. Capasso. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 10, (2019).

【31】S. Colburn, A. Zhan and A. Majumdar. Varifocal zoom imaging with large area focal length adjustable metalenses. Optica. 5, 825-831(2018).

【32】A. She, S. Zhang, S. Shian, D. R. Clarke and F. Capasso. Large area metalenses: design, characterization, and mass manufacturing. Opt. Express. 26, 1573-1585(2018).

【33】O. Avayu, E. Almeida, Y. Prior and T. Ellenbogen. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 8, (2017).

【34】J. N. Mait, G. W. Euliss and R. A. Athale. Computational imaging. Adv. Opt. Photonics. 10, 409-483(2018).

【35】S. Colburn, A. Zhan and A. Majumdar. Metasurface optics for full-color computational imaging. Sci. Adv. 4, (2018).

【36】S. Colburn and A. Majumdar. Simultaneous achromatic and varifocal imaging with quartic metasurfaces in the visible. ACS Photonics. 7, 120-127(2019).

【37】L. Ledesma-Carrillo, C. M. Gómez-Sarabia, M. Torres-Cisneros, R. Guzmán-Cabrera, C. Guzmán-Cano and J. Ojeda-Casta?eda. Hadamard circular masks: high focal depth with high throughput. Opt. Express. 25, 17004-17020(2017).

【38】J. Ojeda-Castaneda, J. E. A. Landgrave and H. M. Escamilla. Annular phase-only mask for high focal depth. Opt. Lett. 30, 1647-1649(2005).

【39】A. Kolb, B. Labitzke, M. Rouf, W. Heidrich, F. Heide and M. B. Hullin. High-quality computational imaging through simple lenses. ACM Trans. Graph. 32, (2013).

【40】C. J. Schuler, M. Hirsch, S. Harmeling and B. Scholkopf. Non-stationary correction of optical aberrations. International Conference on Computer Vision. : IEEE, 659-666(2011).

【41】H. Haim, A. Bronstein and E. Marom. Computational multi-focus imaging combining sparse model with color dependent phase mask. Opt. Express. 23, 24547-24556(2015).

【42】S. Elmalem, R. Giryes and E. Marom. Learned phase coded aperture for the benefit of depth of field extension. Opt. Express. 26, 15316-15331(2018).

【43】Y. Peng, Q. Fu, H. Amata, S. Su, F. Heide and W. Heidrich. Computational imaging using lightweight diffractive-refractive optics. Opt. Express. 23, 31393-31407(2015).

【44】O. Cossairt and S. Nayar. Spectral focal sweep: extended depth of field from chromatic aberrations. IEEE International Conference on Computational Photography (ICCP). 1-8(2010).

【45】E. R. Dowski and W. T. Cathey. Extended depth of field through wave-front coding. Appl. Opt. 34, 1859-1866(1995).

【46】W. Chi and N. George. Electronic imaging using a logarithmic asphere. Opt. Lett. 26, 875-877(2001).

【47】Z. Zhai, S. Ding, Q. Lv, X. Wang and Y. Zhong. Extended depth of field through an axicon. J. Mod. Opt. 56, 1304-1308(2009).

【48】H. B. Wach, E. R. Dowski and W. T. Cathey. Control of chromatic focal shift through wave-front coding. Appl. Opt. 37, 5359-5367(1998).

【49】N. Patwary, H. Shabani, A. Doblas, G. Saavedra and C. Preza. Experimental validation of a customized phase mask designed to enable efficient computational optical sectioning microscopy through wavefront encoding. Appl. Opt. 56, D14-D23(2017).

【50】S. Zhang, A. Soibel, S. A. Keo, D. Wilson, S. B. Rafol, D. Z. Ting, A. She, S. D. Gunapala and F. Capasso. Solid-immersion metalenses for infrared focal plane arrays. Appl. Phys. Lett. 113, (2018).

【51】W. T. Chen, A. Y. Zhu and F. Capasso. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 604-620(2020).

【52】Y. Wang, S. Yan, A. T. Friberg, D. Kuebel and T. D. Visser. Electromagnetic diffraction theory of refractive axicon lenses. J. Opt. Soc. Am. A. 34, 1201-1211(2017).

【53】A. Zhan, S. Colburn, C. M. Dodson and A. Majumdar. Metasurface freeform nanophotonics. Sci. Rep. 7, (2017).

【54】G. Osnabrugge, R. Horstmeyer, I. N. Papadopoulos, B. Judkewitz and I. M. Vellekoop. Generalized optical memory effect. Optica. 4, 886-892(2017).

【55】F. Orieux, J.-F. Giovannelli and T. Rodet. Bayesian estimation of regularization and point spread function parameters for Wiener-Hunt deconvolution. J. Opt. Soc. Am. A. 27, 1593-1607(2010).

【56】N. Nacereddine, S. Tabbone and D. Ziou. Similarity transformation parameters recovery based on Radon transform. Application in image registration and object recognition. Pattern Recogn. 48, 2227-2240(2015).

【57】F. Presutti and F. Monticone. Focusing on bandwidth: achromatic metalens limits. Optica. 7, 624-631(2020).

【58】D. G. SmithD. G. Smith. Field Guide to Physical Optics. : SPIE, (2013).

【59】P. GetreuerP. Getreuer. Total variation deconvolution using split Bregman. Image Process. Line. 2, 158-174(2012).

【60】F. Heide, M. Steinberger, Y. T. Tsai, M. Rouf, D. Paj?k, D. Reddy, O. Gallo, J. Liu, W. Heidrich, K. Egiazarian and J. Kautz. FlexISP: a flexible camera image processing framework. ACM Trans. Graph. 33, (2014).

【61】V. Liu and S. Fan. S4 : a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun. 183, 2233-2244(2012).

【62】S. van der Walt, J. L. Sch?nberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart and T. Yu. scikit-image: image processing in Python. PeerJ. 2, (2014).

引用该论文

Luocheng Huang, James Whitehead, Shane Colburn, and Arka Majumdar, "Design and analysis of extended depth of focus metalenses for achromatic computational imaging," Photonics Research 8(10), 1613-1623 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF