首页 > 论文 > 激光与光电子学进展 > 57卷 > 22期(pp:221508--1)

基于单帧多次局部曝光的测速方法

Velocity Measurement Method Based on Single-Frame Multiple Local Exposures

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对测量高速运动暗小目标的需求,提出了一种基于单帧多次局部曝光的测速方法。理论分析了关键参数对测量频率的影响,推导了激光照明目标的灰度成像模型表达式。利用脉冲激光作为局部曝光光源与时序基准,在单帧图像中多次生成带时间戳的目标影像;建立单帧多次局部曝光测速模型,利用单目视觉与激光测距数据实现了暗小目标的空间定位与测速,突破了高速相机测量频率的上限并提高了测量精度;对速度为1500m/s的目标进行了测速仿真实验,结果表明,测速误差小于0.7%。在低速条件下设计了样机实验,相比标准速度的目标发射器,测速误差小于2.5%,且系统成本较低、机动性好,满足工程精度要求。

Abstract

In order to meet the requirements of measuring high-velocity moving dim small targets, a velocity measurement method based on single-frame multiple local exposures is designed. The influence of key parameters on measurement frequency is analyzed theoretically, and the expression of gray imaging model of laser illuminated target is deduced. Using pulsed laser as local exposure light source and timing base, the target image with time stamp is generated in a single-frame image for many times. A velocity measurement model of single-frame multiple local exposures is established, and the spatial positioning and velocity measurement of small dark targets are realized by using monocular vision and laser ranging data, which breaks the upper limit of the measurement frequency of high-velocity camera and improves the measurement accuracy. Velocity measurement simulation experiment is carried out on a target with a velocity of 1500m/s, and the results showed that the velocity measurement error is less than 0.7%. The prototype experiment proves that the relative velocity error of target is less than 2.5% compared with the velocity of standard velocity target launcher in low velocity conditions, and the system has low cost and good maneuverability, which meets the requirements of engineering precision.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TB872

DOI:10.3788/LOP57.221508

所属栏目:机器视觉

基金项目:吉林省科技发展计划;

收稿日期:2020-04-08

修改稿日期:2020-04-30

网络出版日期:2020-11-01

作者单位    点击查看

吕琼莹:长春理工大学机电工程学院, 吉林 长春 130022
谢缘:长春理工大学机电工程学院, 吉林 长春 130022
穆国振:长春理工大学机电工程学院, 吉林 长春 130022
贾冰:长春理工大学机电工程学院, 吉林 长春 130022

联系人作者:谢缘(voyager1970@outlook.com)

备注:吉林省科技发展计划;

【1】Levinson S, Satapathy S. High-resolution projectile velocity and acceleration measurement using photonic Doppler velocimetry [J]. Bulletin of the American Physical Society. 2009, 1195(1): 585-588.Levinson S, Satapathy S. High-resolution projectile velocity and acceleration measurement using photonic Doppler velocimetry [J]. Bulletin of the American Physical Society. 2009, 1195(1): 585-588.

【2】Zhou D, Dong X C, Zhang F, et al. Monocular pose optimization algorithm based on adaptive reprojection error [J]. Laser & Optoelectronics Progress. 2019, 56(2): 021204.
周单, 董秀成, 张帆, 等. 基于自适应重投影误差单目位姿优化算法 [J]. 激光与光电子学进展. 2019, 56(2): 021204.

【3】Liu H N, Zheng Y, Li W B, et al. Velocity measurement method of projectiles based on high-speed photography technology [J]. Ordnance Industry Automation. 2014, 33(11): 71-74.
刘华宁, 郑宇, 李文彬, 等. 基于高速摄影技术的速度测量方法 [J]. 兵工自动化. 2014, 33(11): 71-74.

【4】Tang X Z, Wang Z J, Yin J P, et al. Experimental study on velocity measurement of projectile by high speed photography [J]. Journal of Ordnance Equipment Engineering. 2017, 38(12): 167-170.
汤雪志, 王志军, 尹建平, 等. 弹丸速度测量的高速摄影试验研究 [J]. 兵器装备工程学报. 2017, 38(12): 167-170.

【5】Liu Y Y, Feng P, Long Z R, et al. Research and implementation of binocular location system based on region of interest segmentation [J]. Laser & Optoelectronics Progress. 2018, 55(5): 051102.
刘远远, 冯鹏, 龙邹荣, 等. 基于靶标区域分割的双目定位系统研究与实现 [J]. 激光与光电子学进展. 2018, 55(5): 051102.

【6】Huang J, Ke F W, Xie A M, et al. Vision measurement technology of model poses with high accuracy on the 200 m free flight ballistic range [J]. Journal of Experiments in Fluid Mechanics. 2018, 32(5): 67-75.
黄洁, 柯发伟, 谢爱民, 等. 200 m自由飞弹道靶模型高精度视觉位姿测量技术 [J]. 实验流体力学. 2018, 32(5): 67-75.

【7】Decker R J, Duca M. Spickert-fulton S. Measurement of bullet impact conditions using automated in-flight photography system [J]. Defence Technology. 2017, 13(4): 288-294.

【8】Zhang Y J, Gao H J, Sun Z H, et al. The application study of shadow photography in measuring motion attitude of large caliber projectile [J]. Proceedings of SPIE. 2020, 1142: 114271J.

【9】Luo H, Gu J L, Chen P, et al. Research on shadow photograph system with three-sequence laser sparking [J]. Semiconductor Optoelectronics. 2011, 32(2): 265-267.
罗红娥, 顾金良, 陈平, 等. 三次序列闪光阴影照相系统研究 [J]. 半导体光电. 2011, 32(2): 265-267.

【10】Luo H E, Gu J L, Chen P, et al. Velocity measurement based on orthogonal CCD shadow photograph system in ballistic range [J]. The Journal of China Universities of Posts and Telecommunications. 2010, 17(1): 127-130.Luo H E, Gu J L, Chen P, et al. Velocity measurement based on orthogonal CCD shadow photograph system in ballistic range [J]. The Journal of China Universities of Posts and Telecommunications. 2010, 17(1): 127-130.

【11】Tateno Y, Ishii M, Oku H. High resolution imaging of a subsonic projectile using automated mirrors with large aperture [J]. Proceedings of SPIE. 2017, 10328: 103280W.

【12】Klimov D, Poduraev Y. Robotic flight follower system for high speed recording [M]. Vienna: DAAAM International. 2015, 720-726.

【13】Dugger P H. -03-28]. https://www.researchgate.net/publication/235104923_LASER_PHOTOGRAPHIC_TECHNIQUE_FOR_DIRECT_PHOTOGRAPHY_IN_AN_AEROBALLISTIC_ . RANGE. 2020.

【14】Sun Q F. A method of measuring the projectiles motion pose based on high-speed imaging technology [D]. Nanjing: Nanjing University of Science and Technology. 2018.
孙强飞. 基于高速成像技术的弹丸运动位姿参数测量方法研究 [D]. 南京: 南京理工大学. 2018.

【15】Jia B, Lü Q Y, Cao G H. Optimization analysis of pulse laser distributed scanning parameters [J]. Chinese Journal of Lasers. 2017, 44(12): 1204008.
贾冰, 吕琼莹, 曹国华. 脉冲激光分布式扫描参数的优化分析 [J]. 中国激光. 2017, 44(12): 1204008.

【16】Radar Essentials: A concise handbook for radar design and performance analysis [M]. London: Institution of Engineering and Technology. 2012.

引用该论文

Lü Qiongying,Xie Yuan,Mu Guozhen,Jia Bing. Velocity Measurement Method Based on Single-Frame Multiple Local Exposures[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221508

吕琼莹,谢缘,穆国振,贾冰. 基于单帧多次局部曝光的测速方法[J]. 激光与光电子学进展, 2020, 57(22): 221508

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF