首页 > 论文 > 激光与光电子学进展 > 57卷 > 22期(pp:221001--1)

基于Kanade-Lucas-Tomasi算法的人体体表呼吸运动追踪

Tracking of Human Respiratory Motion Based on Kanade-Lucas-Tomasi Algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种基于Kanade-Lucas-Tomasi算法的目标检测与追踪技术,用于放疗场景下实时追踪人体的呼吸运动。实验采用运动参数可调的仿真人体模型实现对人体不同呼吸状态的模拟,同时用摄像头采集运动过程的图像信息。对采集后的图像进行边缘检测和边缘增强等一系列图像预处理后,手动标记图像第一帧的感兴趣区域,通过追踪算法实现对其余帧图像感兴趣区域的自动追踪。经实验结果验证,该算法可以精准地实现对人体体表在不同呼吸状态下的实时追踪,实际归一化后的位移误差小于0.03,该算法能够应用于临床上的呼吸运动检测,利用获取的图像信息及参数指导精准放疗。

Abstract

In this study, an object detection and tracking technology based on the Kanade-Lucas-Tomasi (KLT) algorithm is proposed in this work, which is applied to tracking human respiratory motion during radiotherapy. In the experiment, a human body model with adjustable motion parameters is used to simulate different breathing states of human body, and the image information of motion process is collected by the camera. After a series of image preprocessing such as edge detection and edge enhancement performed on the collected image, the region of interest in the first frame of the image is manually marked, and automatic tracking of the region of interest in the remaining frames of the image is realized through a tracking algorithm. Experimental results verify that the proposed algorithm can accurately realize real-time tracking of the human body surface in different breathing states, and the actual normalized displacement error is less than 0.03. The algorithm can be applied to clinical respiratory motion detection, and the obtained image information and parameters can be used to guide precise radiotherapy.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/LOP57.221001

所属栏目:图像处理

基金项目:华侨大学中青年培育计划、 中国科学院“西部之光”计划、 中国科学院青年创新基金、 华侨大学研究生科研创新能力培育计划;

收稿日期:2020-02-05

修改稿日期:2020-03-27

网络出版日期:2020-11-01

作者单位    点击查看

刘昕宇:华侨大学信息科学与工程学院, 福建 厦门 361021
闫铮:华侨大学信息科学与工程学院, 福建 厦门 361021
段放:华侨大学信息科学与工程学院, 福建 厦门 361021
戴中颖:中国科学院近代物理研究所, 甘肃 兰州 730000

联系人作者:段放(nkfetsh@gmail.com); 戴中颖(nkfetsh@gmail.com);

备注:华侨大学中青年培育计划、 中国科学院“西部之光”计划、 中国科学院青年创新基金、 华侨大学研究生科研创新能力培育计划;

【1】Global Cancer Observatory. Report of WHO Scientific Group[R] . Geneva: WHO. 2019, 3.

【2】Borras J M, de Lievens Y, Dunscombe P, et al. The optimal utilization proportion of external beam radiotherapy in European countries: an ESTRO-HERO analysis [J]. Radiotherapy and Oncology. 2015, 116(1): 38-44.Borras J M, de Lievens Y, Dunscombe P, et al. The optimal utilization proportion of external beam radiotherapy in European countries: an ESTRO-HERO analysis [J]. Radiotherapy and Oncology. 2015, 116(1): 38-44.

【3】Atun R, Jaffray D A, Barton M B, et al. Expanding global access to radiotherapy [J]. The Lancet Oncology. 2015, 16(10): 1153-1186.

【4】Blattmann H. Tumor therapy with heavy charged particles [J]. AIP Conference Proceedings. 1999, 495: 444.Blattmann H. Tumor therapy with heavy charged particles [J]. AIP Conference Proceedings. 1999, 495: 444.

【5】Kr?mer M, J?kel O, Haberer T, et al. Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization [J]. Physics in Medicine and Biology. 2000, 45(11): 3299-3317.Kr?mer M, J?kel O, Haberer T, et al. Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization [J]. Physics in Medicine and Biology. 2000, 45(11): 3299-3317.

【6】Scholz M, Kellerer A M, Kraft-Weyrather W, et al. Computation of cell survival in heavy ion beams for therapy [J]. Radiation and Environmental Biophysics. 1997, 36(1): 59-66.

【7】Kr?mer M, J?kel O, Haberer T, et al. Treatment planning for scanned ion beams [J]. Radiotherapy and Oncology. 2004, 73: S80-S85.

【8】Phillips M H, Pedroni E, Blattmann H, et al. Effects of respiratory motion on dose uniformity with a charged particle scanning method [J]. Physics in Medicine and Biology. 1992, 37(1): 223-234.

【9】Bert C, Gr?zinger S O, Rietzel E. Quantification of interplay effects of scanned particle beams and moving targets [J]. Physics in Medicine and Biology. 2008, 53(9): 2253-2265.Bert C, Gr?zinger S O, Rietzel E. Quantification of interplay effects of scanned particle beams and moving targets [J]. Physics in Medicine and Biology. 2008, 53(9): 2253-2265.

【10】Berson A M, Emery R, Rodriguez L, et al. Clinical experience using respiratory gated radiation therapy: Comparison of free-breathing and breath-hold techniques [J]. International Journal of Radiation Oncology * Biology * Physics. 2004, 60(2): 419-426.

【11】Ekberg L, Holmberg O, Wittgren L, et al. What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? [J]. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology. 1998, 48(1): 71-77.

【12】Hoisak J D P, Sixel K E, Tirona R, et al. Correlation of lung tumor motion with external surrogate indicators of respiration [J]. International Journal of Radiation Oncology * Biology * Physics. 2004, 60(4): 1298-1306.

【13】Urschel H C. Jr, Kresl J J, Luketich J D, et al. Treating tumors that move with respiration [M]. Heidelberg: Springer. 2007.

【14】Eccles C, Brock K K, Bissonnette J P, et al. Reproducibility of liver position using active breathing coordinator for liver cancer radiotherapy [J]. International Journal of Radiation Oncology * Biology * Physics. 2006, 64(3): 751-759.

【15】Wang J, Borsdorf A, Heigl B, et al. Gradient-based differential approach for 3-D motion compensation in interventional 2-D/3-D image fusion[C]//2014 2nd International Conference on 3D Vision, December 8-11, 2014, Tokyo, Japan. New York: , 2014, 293-300.

【16】Ayad S, Khanna A K, Iqbal S U, et al. Characterisation and monitoring of postoperative respiratory depression: current approaches and future considerations [J]. British Journal of Anaesthesia. 2019, 123(3): 378-391.Ayad S, Khanna A K, Iqbal S U, et al. Characterisation and monitoring of postoperative respiratory depression: current approaches and future considerations [J]. British Journal of Anaesthesia. 2019, 123(3): 378-391.

【17】Liu H, Wang X L. Remote sensing image segmentation model based on attention mechanism [J]. Laser and Optoeletronics Progress. 2020, 57(8): 081002.
刘航, 汪西莉. 基于注意力机制的遥感图像分割模型 [J]. 激光与光电子学进展. 2020, 57(8): 081002.

【18】Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision . [C]// Proceedings of the 1981 DARPA Image Understanding Workshop,San Francisco: Morgan Kaufmann Publishers Inc. 1981, 121-130.

【19】Shi J, Tomas C. Good features to track[C]//1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, June 21-23, 1994, Seattle, WA, USA. New York: , 1994, 593-600.

引用该论文

Liu Xinyu,Yan Zheng,Duan Fang,Dai Zhongying. Tracking of Human Respiratory Motion Based on Kanade-Lucas-Tomasi Algorithm[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221001

刘昕宇,闫铮,段放,戴中颖. 基于Kanade-Lucas-Tomasi算法的人体体表呼吸运动追踪[J]. 激光与光电子学进展, 2020, 57(22): 221001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF