首页 > 论文 > 中国激光 > 47卷 > 11期(pp:1102002--1)

30CrMnSiA和30CrMnSiNi2A高强钢激光熔覆修复后的组织特征与力学性能

Microstructures and Mechanical Properties of 30CrMnSiA and 30CrMnSiNi2A High-Strength Steels After Laser-Cladding Repair

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对30CrMnSiA和30CrMnSiNi2A高强钢的修复问题,采用30CrMnSiA合金粉末在两种基体上进行多层多道激光熔覆,研究了熔覆层、基体、热影响区的微观组织和力学性能。对于30CrMnSiA基体,其熔覆层组织主要为索氏体;随着层数增加,熔覆层中的索氏体减少,马氏体增多,盖面层主要为马氏体组织;热影响区组织主要为马氏体和少量块状铁素体,其中块状铁素体为原基体中铁素体的未熔相。对于30CrMnSiNi2A基体,其熔覆层组织主要为索氏体,随着层数增加,马氏体含量逐渐增加,但仍以索氏体为主;热影响区组织主要为索氏体和粗晶马氏体。在力学性能上,30CrMnSiA基体上熔覆层的硬度大于30CrMnSiNi2A基体上熔覆层的硬度,热影响区软化现象不明显,而30CrMnSiNi2A热影响区软化现象明显;30CrMnSiA基体上熔覆层试样的抗拉强度为基体的90%以上,且其冲击韧性、延伸率均优于基体;30CrMnSiNi2A基体上熔覆层试样的冲击韧性优于基体,但其抗拉强度、延伸率则大大低于基体。实验结果表明:30CrMnSiA合金粉末适合用于30CrMnSiA钢的激光熔覆修复,而对于30CrMnSiNi2A钢,则需要进一步减少热输入,以减小热影响区的宽度,减少粗晶马氏体的生成以及多层熔覆过程中马氏体的分解。

Abstract

Substrates of 30CrMnSiA and 30CrMnSiNi2A high-strength steels were repaired by a multilayer laser-cladding process using 30CrMnSiA alloy powders. The microstructures and mechanical properties of the cladding layers, substrates, and heat-affected zones were analyzed. The cladding layers on both the 30CrMnSiA and 30CrMnSiNi2A substrates exhibited a mainly sorbite microstructure. As the number of cladding layers increased, the sorbite and martensite contents on the 30CrMnSiA substrate decreased and increased, respectively, and a mainly martensite microstructure was observed in the cap layer. In the heat-affected zone (HAZ) of the 30CrMnSiA substrate, the microstructure was mainly martensite and small amount of blocky ferrite, and the ferrite was identified as the unmelted phase of the original ferrite matrix. In contrast, as the number of cladding layers on the 30CrMnSiNi2A substrate increased, the martensite content gradually increased, but sorbite remained the dominant microstructure. In the heat-affected zone of the 30CrMnSiNi2A substrate, the microstructure was mainly sorbite and coarse-grained martensite. The mechanical properties of the high-strength steels were also analyzed. The microhardness values were larger in the cladding layer on the 30CrMnSiA substrate than those on the 30CrMnSiNi2A substrate, and the softening phenomenon of the heat-affected zone was more obvious on the 30CrMnSiNi2A substrate than that on the 30CrMnSiA substrate. The tensile strength of the cladded sample on 30CrMnSiA substrate was over 90% of the substrate, and the impact toughness and elongation of the cladded samples were better than those of the 30CrMnSiA substrate. On the 30CrMnSiNi2A substrate, the cladding improved the impact toughness but significantly reduced the tensile strength and elongation. The results confirmed the suitability of 30CrMnSiA powders for laser-cladding repair of 30CrMnSiA steel. However, when the powders were used to repair 30CrMnSiNi2A steel, the heat input of the multilayer laser-cladding must be lowered to reduce the width of heat-affected zone, the formation of coarse-grained martensite, and the matensite decomposition.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:V261.8

DOI:10.3788/CJL202047.1102002

所属栏目:激光制造

基金项目:上海市军民融合专项;

收稿日期:2020-04-20

修改稿日期:2020-06-28

网络出版日期:2020-11-01

作者单位    点击查看

庞小通:上海交通大学材料科学与工程学院, 上海市激光制造与材料改性重点实验室, 上海 200240
龚群甫:中国人民解放军第四七二四工厂, 上海 200436
王志杰:中国人民解放军第四七二四工厂, 上海 200436
李铸国:上海交通大学材料科学与工程学院, 上海市激光制造与材料改性重点实验室, 上海 200240
姚成武:上海交通大学材料科学与工程学院, 上海市激光制造与材料改性重点实验室, 上海 200240

联系人作者:姚成武(yaochwu@sjtu.edu.cn)

备注:上海市军民融合专项;

【1】Yang S D. Formation causes and suppression of cracking in laser-MAG hybrid welding of 30CrMnSiA steel [D]. Harbin: Harbin Institute of Technology. 2012, 1-9.
杨斯达. 30CrMnSiA钢激光-MAG复合焊接裂纹形成原因与抑制措施 [D]. 哈尔滨: 哈尔滨工业大学. 2012, 1-9.

【2】Zhuang M X, Li X M, Xu M, et al. Vacuum electron beam welding technology research on 30CrMnSiNi2A ultra-high strength steel [J]. Aeronautical Manufacturing Technology. 2017, 60(6): 100-104.
庄明祥, 李小曼, 徐梅, 等. 30CrMnSiNi2A超高强度钢真空电子束焊接工艺应用研究 [J]. 航空制造技术. 2017, 60(6): 100-104.
Zhuang M X, Li X M, Xu M, et al. Vacuum electron beam welding technology research on 30CrMnSiNi2A ultra-high strength steel [J]. Aeronautical Manufacturing Technology. 2017, 60(6): 100-104.
庄明祥, 李小曼, 徐梅, 等. 30CrMnSiNi2A超高强度钢真空电子束焊接工艺应用研究 [J]. 航空制造技术. 2017, 60(6): 100-104.

【3】Wang H M. Research progress on laser surface modifications of metallic materials and laser rapid forming of high performance metallic components [J]. Acta Aeronautica et Astronautica Sinica. 2002, 23(5): 473-478.
王华明. 金属材料激光表面改性与高性能金属零件激光快速成形技术研究进展 [J]. 航空学报. 2002, 23(5): 473-478.
Wang H M. Research progress on laser surface modifications of metallic materials and laser rapid forming of high performance metallic components [J]. Acta Aeronautica et Astronautica Sinica. 2002, 23(5): 473-478.
王华明. 金属材料激光表面改性与高性能金属零件激光快速成形技术研究进展 [J]. 航空学报. 2002, 23(5): 473-478.

【4】Da Sun S, Fabijanic D, Barr C, et al. In-situ quench and tempering for microstructure control and enhanced mechanical properties of laser cladded AISI 420 stainless steel powder on 300M steel substrates [J]. Surface and Coatings Technology. 2018, 333: 210-219.

【5】Liu J, Li J, Cheng X, et al. Effect of dilution and macrosegregation on corrosion resistance of laser clad AerMet100 steel coating on 300M steel substrate [J]. Surface and Coatings Technology. 2017, 325: 352-359.Liu J, Li J, Cheng X, et al. Effect of dilution and macrosegregation on corrosion resistance of laser clad AerMet100 steel coating on 300M steel substrate [J]. Surface and Coatings Technology. 2017, 325: 352-359.

【6】Liu J, Li J, Cheng X, et al. Microstructures and tensile properties of laser cladded AerMet100 steel coating on 300M steel [J]. Journal of Materials Science & Technology. 2018, 34(4): 643-652.

【7】Rahman Rashid R A, Nazari K A, Barr C, et al. Effect of laser reheat post-treatment on the microstructural characteristics of laser-cladded ultra-high strength steel [J]. Surface and Coatings Technology. 2019, 372: 93-102.

【8】Rahman Rashid R A, Barr C J, Palanisamy S, et al. Effect of clad orientation on the mechanical properties of laser-clad repaired ultra-high strength 300M steel [J]. Surface and Coatings Technology. 2019, 380: 125090.

【9】Barr C, Da Sun S, Easton M, et al. Influence of delay strategies and residual heat on in situ tempering in the laser metal deposition of 300M high strength steel [J]. Surface and Coatings Technology. 2020, 383: 125279.

【10】Liu F G, Lin X, Song M H, et al. Microstructure and mechanical properties of laser solid formed 300M steel [J]. Journal of Alloys and Compounds. 2015, 621: 35-41.Liu F G, Lin X, Song M H, et al. Microstructure and mechanical properties of laser solid formed 300M steel [J]. Journal of Alloys and Compounds. 2015, 621: 35-41.

【11】Louren?o J M, Sun S D, Sharp K, et al. Fatigue and fracture behavior of laser clad repair of AerMet ? 100 ultra-high strength steel [J]. International Journal of Fatigue. 2016, 85: 18-30.

【12】Walker K F, Louren?o J M, Sun S, et al. Quantitative fractography and modelling of fatigue crack propagation in high strength AerMet? 100 steel repaired with a laser cladding process [J]. International Journal of Fatigue. 2017, 94: 288-301.

【13】Barr C, Da Sun S, Easton M, et al. Influence of macrosegregation on solidification cracking in laser clad ultra-high strength steels [J]. Surface and Coatings Technology. 2018, 340: 126-136.

【14】Sun S D, Liu Q C, Brandt M, et al. Effect of laser clad repair on the fatigue behaviour of ultra-high strength AISI 4340 steel [J]. Materials Science and Engineering A. 2014, 606: 46-57.

【15】Chew Y. Pang J H L, Bi G J, et al. Effects of laser cladding on fatigue performance of AISI 4340 steel in the as-clad and machine treated conditions [J]. Journal of Materials Processing Technology. 2017, 243: 246-257.

【16】Sun G F, Yao S, Wang Z D, et al. Microstructure and mechanical properties of HSLA-100 steel repaired by laser metal deposition [J]. Surface and Coatings Technology. 2018, 351: 198-211.

【17】Li W Q. Laser cladding intensification on 30CrMnSi surface [J]. Special Casting & Nonferrous Alloys. 2019, 39(10): 1058-1061.
黎文强. 30CrMnSi钢表面激光熔覆强化技术研究 [J]. 特种铸造及有色合金. 2019, 39(10): 1058-1061.

【18】Zhang Z Q, Qin R Y, Sun T, et al. Microstructure and properties of laser cladding joints of 30CrMnSiA steel [J]. Welding Technology. 2018, 47(12): 9-14.
张志强, 秦仁耀, 孙涛, 等. 30CrMnSiA钢激光熔覆接头的微观组织和性能 [J]. 焊接技术. 2018, 47(12): 9-14.

【19】Zhou K X, Qing R Y, Cao Q, et al. Process of laser cladding of 1Cr15Ni4Mo3 powder on 30CrMnSiNi2A steels [J]. Laser & Optoelectronics Progress. 2018, 55(7): 071404.
周可欣, 秦仁耀, 曹强, 等. 30CrMnSiNi2A钢激光熔覆1Cr15Ni4Mo3粉末工艺 [J]. 激光与光电子学进展. 2018, 55(7): 071404.

【20】Zhang Z Q, Cheng Z H, Cao Q, et al. Repairing of 30CrMnSiNi2A high strength steel by laser cladding [J]. Equipment Environmental Engineering. 2016, 13(1): 62-67.
张志强, 程宗辉, 曹强, 等. 30CrMnSiNi2A超强钢激光熔覆修复试验研究 [J]. 装备环境工程. 2016, 13(1): 62-67.

【21】Zhu H M, Hu J P, Li B C, et al. Research progress of laser cladding stainless steel coating on Fe-based substrate [J]. Surface Technology. 2020, 49(3): 74-84.
朱红梅, 胡际鹏, 李柏春, 等. 铁基材料表面激光熔覆不锈钢涂层的研究进展 [J]. 表面技术. 2020, 49(3): 74-84.

【22】Lei Z L, Li B W, Ni L C, et al. Mechanism of the crack formation and suppression in laser-MAG hybrid welded 30CrMnSiA joints [J]. Journal of Materials Processing Technology. 2017, 239: 187-194.

【23】Li X J, Huang J, Pan H, et al. Microstructure and formability of laser welding joint of QP1180 high-strength steel sheet [J]. Chinese Journal of Lasers. 2019, 46(3): 0302006.
李学军, 黄坚, 潘华, 等. QP1180高强钢薄板激光焊接接头的组织与成形性能 [J]. 中国激光. 2019, 46(3): 0302006.

【24】Chipman J. Thermodynamics and phase diagram of the Fe-C system [J]. Metallurgical and Materials Transactions B. 1972, 3(1): 55-64.

【25】Su T J, Wang F C, Li S K, et al. Calculation of thermal conductivity for alloy steels [J]. Transactions of Beijing Institute of Technology. 2005, 25(1): 91-94.
苏铁健, 王富耻, 李树奎, 等. 合金钢的热导率计算 [J]. 北京理工大学学报. 2005, 25(1): 91-94.

【26】Burtsev S A. Exploring ways to improve efficiency of gasdynamic energy separation [J]. High Temperature. 2014, 52(1): 12-18.

【27】Sattar A, Abbas M, Hasham H J, et al. Experimental and analytical investigation of steel bolts failed after isothermal heat treatment [J]. Journal of Failure Analysis and Prevention. 2015, 15(2): 327-333.

【28】Liu B X, Chen C X, Yin F X, et al. Microstructure analysis and weldability investigation of stainless steel clad plate[M]. ∥The Minerals: , 2017, 425-433.

【29】Zhu H M, Hu W F, Li Y Z, et al. Effect of tempering temperature on microstructure and properties of laser-cladded martensitic stainless steel layer [J]. Chinese Journal of Lasers. 2019, 46(12): 1202001.
朱红梅, 胡文锋, 李勇作, 等. 回火温度对马氏体不锈钢激光熔覆层组织和性能的影响 [J]. 中国激光. 2019, 46(12): 1202001.

引用该论文

Pang Xiaotong,Gong Qunfu,Wang Zhijie,Li Zhuguo,Yao Chengwu. Microstructures and Mechanical Properties of 30CrMnSiA and 30CrMnSiNi2A High-Strength Steels After Laser-Cladding Repair[J]. Chinese Journal of Lasers, 2020, 47(11): 1102002

庞小通,龚群甫,王志杰,李铸国,姚成武. 30CrMnSiA和30CrMnSiNi2A高强钢激光熔覆修复后的组织特征与力学性能[J]. 中国激光, 2020, 47(11): 1102002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF