首页 > 论文 > 中国激光 > 47卷 > 11期(pp:1113002--1)

表面等离激元增强硅基近红外光电导探测器

Surface Plasmon Enhanced Silicon-Based Near-Infrared Photoconductive Detector

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

近年来,表面等离激元(SP)增强的金属纳米结构中热载流子产生、传输和收集得到了广泛而深入的研究。其中,利用电子隧穿和热发射效应实现的全新光电转换机制,结合平面化制作和CMOS兼容集成等,有望成为硅基红外光电探测的备选方案。目前这类探测器主要为金属-半导体肖特基结的光伏型器件,其光电响应较弱。为此,报道了一种基于金属-硅复合无序纳米结构的光电导器件,得益于无序表面等离激元局域热点效应和多叉指金属-半导体-金属(MSM)结构的显著光电导增益,实验获得了硅亚带隙的宽带强光电响应。该热载流子介导的多叉指MSM器件在1310 nm波长处的光电流响应度高达2.50 A/W。

Abstract

In recent years, the generation, transport, and harvesting of hot carriers in surface plasmon (SP) enhanced metal nanostructures have been extensively and deeply studied. Among them, a new photoelectric conversion mechanism based on electronic tunneling and thermal emission effect, combined with planarization manufacture and complementary metal oxide semiconductor (CMOS) compatible integration, is expected to be an alternative scheme for silicon-based infrared photoelectric detection. At present, these detectors are mainly used in metal-semiconductor Schottky junction photovoltaic devices, which have weak photoelectric response. In this paper, a novel photoconductive device based on metal-silicon composite disordered nanostructures is reported. Due to the localized hot spot effect of the disordered surface plasmon and the significant photoconductivity gain of the multiple interdigital metal semiconductor metal (MSM) structures, the broad-band strong photoelectric response of the silicon sub-band gap is obtained experimentally. Finally, the photocurrent responsivity of the hot carrier mediated multiple interdigital MSM devices is as high as 2.50 A/W at 1310 nm.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN215

DOI:10.3788/CJL202047.1113002

所属栏目:微纳光学

基金项目:国家重点研发计划、国家自然科学基金、广东省国际科技合作项目、广东省自然科学基金杰出青年基金 、广东省珠江人才计划;

收稿日期:2020-05-21

修改稿日期:2020-06-28

网络出版日期:2020-11-01

作者单位    点击查看

唐恝:暨南大学纳米光子学研究院, 广东 广州 510632
李家祥:暨南大学纳米光子学研究院, 广东 广州 510632
陈沁:暨南大学纳米光子学研究院, 广东 广州 510632
文龙:暨南大学纳米光子学研究院, 广东 广州 510632

联系人作者:文龙(longwen@jnu.edu.cn)

备注:国家重点研发计划、国家自然科学基金、广东省国际科技合作项目、广东省自然科学基金杰出青年基金 、广东省珠江人才计划;

【1】Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications [J]. Nature Photonics. 2010, 4(5): 297-301.Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications [J]. Nature Photonics. 2010, 4(5): 297-301.

【2】Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector arrays [J]. Journal of Applied Physics. 2009, 105(9): 091101.Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector arrays [J]. Journal of Applied Physics. 2009, 105(9): 091101.

【3】Yu Y F, Miao F, He J, et al. Photodetecting and light-emitting devices based on two-dimensional materials [J]. Chinese Physics B. 2017, 26(3): 036801.

【4】Shi Z, Li L Z, Zhao Y, et al. Implantable optoelectronic devices and systems for biomedical application [J]. Chinese Journal of Lasers. 2018, 45(2): 0207001.
史钊, 李丽珠, 赵钰, 等. 植入式生物医疗光电子器件与系统 [J]. 中国激光. 2018, 45(2): 0207001.

【5】Yu Y F, Ni Z H. Photodetection based on surface plasmon-induced hot electrons [J]. Laser & Optoelectronics Progress. 2019, 56(20): 202403.
于远方, 倪振华. 表面等离激元热电子光电探测 [J]. 激光与光电子学进展. 2019, 56(20): 202403.

【6】Liu Y Z, Li G H, Cui Y X, et al. Research progress in perovskite photodetectors [J]. Laser & Optoelectronics Progress. 2019, 56(1): 010001.
刘艳珍, 李国辉, 崔艳霞, 等. 钙钛矿光电探测器的研究进展 [J]. 激光与光电子学进展. 2019, 56(1): 010001.

【7】Beling A, Campbell J C. InP-based high-speed photodetectors [J]. Journal of Lightwave Technology. 2009, 27(3): 343-355.Beling A, Campbell J C. InP-based high-speed photodetectors [J]. Journal of Lightwave Technology. 2009, 27(3): 343-355.

【8】Kang Y, Mages P, Clawson A R, et al. Fused InGaAs-Si avalanche photodiodes with low-noise performances [J]. IEEE Photonics Technology Letters. 2002, 14(11): 1593-1595.Kang Y, Mages P, Clawson A R, et al. Fused InGaAs-Si avalanche photodiodes with low-noise performances [J]. IEEE Photonics Technology Letters. 2002, 14(11): 1593-1595.

【9】Koester S J, Schaub J D, Dehlinger G, et al. Germanium-on-SOI infrared detectors for integrated photonic applications [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2006, 12(6): 1489-1502.Koester S J, Schaub J D, Dehlinger G, et al. Germanium-on-SOI infrared detectors for integrated photonic applications [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2006, 12(6): 1489-1502.

【10】Harame D L, Koester S J, Freeman G, et al. The revolution in SiGe: impact on device electronics [J]. Applied Surface Science. 2004, 224(1/2/3/4): 9-17.

【11】Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology [J]. Nature Nanotechnology. 2015, 10(1): 25-34.

【12】Yu Y F, Sun Y, Hu Z L, et al. Fast photoelectric conversion in the near-infrared enabled by plasmon-induced hot-electron transfer [J]. Advanced Materials. 2019, 31(43): 1903829.

【13】Wang Y, Shen L, Wang Y, et al. Hot electron-driven photocatalysis and transient absorption spectroscopy in plasmon resonant grating structures [J]. Faraday Discussions. 2019, 214: 325-339.

【14】Liu W K, Wang W Q, Guan Z Q, et al. A plasmon modulated photothermoelectric photodetector in silicon nanostripes [J]. Nanoscale. 2019, 11(11): 4918-4924.

【15】Knight M W, Sobhani H, Nordlander P, et al. Photodetection with active optical antennas [J]. Science. 2011, 332(6030): 702-704.

【16】Wen L, Chen Y F, Liu W W, et al. Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and omni-Schottky junction [J]. Laser & Photonics Reviews. 2017, 11(5): 1700059.

【17】Ajiki Y, Kan T, Yahiro M, et al. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars [J]. Applied Physics Letters. 2016, 108(15): 151102.

【18】Wen L, Chen Y, Liang L, et al. Hot electron harvesting via photoelectric ejection and photothermal heat relaxation in hotspots-enriched plasmonic/photonic disordered nanocomposites [J]. ACS Photonics. 2018, 5(2): 581-591.

【19】Yang Z, Liu M, Liang S H, et al. Hybrid modes in plasmonic cavity array for enhanced hot-electron photodetection [J]. Optics Express. 2017, 25(17): 20268-20273.

【20】Goykhman I, Desiatov B, Khurgin J, et al. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime [J]. Nano Letters. 2011, 11(6): 2219-2224.

【21】Yakubovsky D I, Stebunov Y V, Kirtaev R V, et al. Ultrathin and ultrasmooth gold films on monolayer MoS2 [J]. Advanced Materials Interfaces. 2019, 6(13): 1900196.

【22】Rosenblatt G, Simkhovich B, Bartal G, et al. Nonmodal plasmonics: controlling the forced optical response of nanostructures [J]. Physical Review X. 2020, 10: 011071.

【23】Gao L H, Lemarchand F, Lequime M. Comparison of different dispersion models for single layer optical thin film index determination [J]. Thin Solid Films. 2011, 520(1): 501-509.

【24】Li W, Valentine J. Harvesting the loss: surface plasmon-based hot electron photodetection [J]. Nanophotonics. 2017, 6(1): 177-191.

【25】Chen B. Structure optimization and temperature dependent characteristics study of SiC MSM ultraviolet detector Xi''''an: [D]. Xidian University. 2012.
陈斌. 碳化硅MSM紫外探测器结构优化与温度特性研究 [D]. 西安: 西安电子科技大学. 2012.

【26】Chen Y F. Hot electron infrared detector based on surface plasmon effect [D]. Shanghai: Shanghai University. 2017.
陈义富. 基于表面等离激元效应的热电子红外探测器 [D]. 上海: 上海大学. 2018.

引用该论文

Tang Jia,Li Jiaxiang,Chen Qin,Wen Long. Surface Plasmon Enhanced Silicon-Based Near-Infrared Photoconductive Detector[J]. Chinese Journal of Lasers, 2020, 47(11): 1113002

唐恝,李家祥,陈沁,文龙. 表面等离激元增强硅基近红外光电导探测器[J]. 中国激光, 2020, 47(11): 1113002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF