首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170611--1)

单晶光纤制备及单晶光纤激光器研究进展

Research Progress in Preparation of Single Crystal Fiber and Fiber Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

单晶光纤(SCF)是体块晶体与常规光纤的结合体,拥有优异的物理和化学性能以及良好的热管理能力,已经逐渐成为固体激光领域的研究热点。详细介绍两种主要的单晶光纤生长方法:激光加热基座(LHPG)法和微下拉(μ-PD)法,以单晶光纤制备及单晶光纤激光器研究为主线,对国内外的研究现状进行综述。最后,结合目前研究基础,分析单晶光纤的研究前景及发展趋势。

Abstract

Single crystal fiber (SCF) is a combination of bulk crystal and conventional fiber, it has gradually become a research hotspot in the field of solid-state lasers because of the excellent physical and chemical properties accompanying with good thermal management. Laser heated pedestal growth (LHPG) and micro-pulling-down (μ-PD) growth methods are introduced in detail. Meanwhile, the research status about the fabrication of SCF and SCF lasers at home and abroad are summarized. Finally, combined with the current research foundation, the research prospects and development trends of SCF are analyzed.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170611

所属栏目:功能光纤

基金项目:山东省重点研发计划、国家自然科学基金科学仪器基础研究专项基金;

收稿日期:2019-02-28

修改稿日期:2019-04-09

网络出版日期:2019-09-01

作者单位    点击查看

王涛:山东大学晶体材料国家重点实验室, 山东 济南 250100山东大学功能晶体材料及器件教育部重点实验室, 山东 济南 250100
张健:山东大学晶体材料国家重点实验室, 山东 济南 250100山东大学功能晶体材料及器件教育部重点实验室, 山东 济南 250100
张娜:山东大学晶体材料国家重点实验室, 山东 济南 250100山东大学功能晶体材料及器件教育部重点实验室, 山东 济南 250100
武柏屹:山东大学晶体材料国家重点实验室, 山东 济南 250100山东大学功能晶体材料及器件教育部重点实验室, 山东 济南 250100
王思媛:山东大学晶体材料国家重点实验室, 山东 济南 250100山东大学功能晶体材料及器件教育部重点实验室, 山东 济南 250100
贾志泰:山东大学晶体材料国家重点实验室, 山东 济南 250100山东大学功能晶体材料及器件教育部重点实验室, 山东 济南 250100
陶绪堂:山东大学晶体材料国家重点实验室, 山东 济南 250100山东大学功能晶体材料及器件教育部重点实验室, 山东 济南 250100

联系人作者:贾志泰, 陶绪堂(z.jia@sdu.edu.cn, txt@sdu.edu.cn)

备注:山东省重点研发计划、国家自然科学基金科学仪器基础研究专项基金;

【1】Jiang M H. Crystal and optoelectronic functional materials. Functional Materials Information. 1(2), 3-10(2004).
蒋民华. 人工晶体与光电功能材料. 功能材料信息. 1(2), 3-10(2004).

【2】Nilsson J and Payne D N. High-power fiber lasers. Science. 332(6032), 921-922(2011).

【3】Richardson D J, Nilsson J and Clarkson W A. High power fiber lasers: current status and future perspectives. Journal of the Optical Society of America B. 27(11), B63-B92(2010).

【4】Beier F, Hupel C, Nold J et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier. Optics Express. 24(6), 6011-6020(2016).

【5】Parker S I, Kenney C J and Segal J. 3D: a proposed new architecture for solid-state radiation detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 395(3), 328-343(1997).

【6】Soleimani N, Ponting B, Gebremichael E et al. Coilable single crystal fibers of doped-YAG for high power laser applications. Proceedings of SPIE. 8959, (2013).

【7】von Gomperz E. Untersuchungen an einkristalldr?hten. Zeitschrift für Physik A Hadrons and Nuclei. 8(1), 184-190(1922).

【8】Labelle H E and Mlavsky A I. Growth of sapphire filaments from the melt. Nature. 216(5115), 574-575(1967).

【9】NAS3-14328. Haggerty J S. Production of fibers by a floating zone fiber drawing technique. NTRS. (1972).

【10】Burrus C A and Stone J. Single-crystal fiber optical devices: a Nd∶YAG fiber laser. Applied Physics Letters. 26(6), 318-320(1975).

【11】Mimura T, Hiyamizu S, Fujii T et al. A new field-effect transistor with selectively doped GaAs/n-AlxGa1-xAs heterojunctions. Japanese Journal of Applied Physics. 19(5), L225-L227(1980).

【12】Bridges T J, Hasiak J S and Strnad A R. Single-crystal AgBr infrared optical fibers. Optics Letters. 5(3), 85-86(1980).

【13】Que W X, Zhou Y, Lam Y L et al. Cladding and characteristics of LiNbO3 single crystal fibre. Journal of Modern Optics. 47(6), 1127-1136(2000).

【14】Ribeiro R M. Fiasca A B A, dos Santos P A M, et al. Optical activity measurements in the photorefractive Bi12TiO20 single crystal fibers. Optical Materials. 10(3), 201-205(1998).

【15】Nubling R K and Harrington J A. Optical properties of single-crystal sapphire fibers. Applied Optics. 36(24), 5934-5940(1997).

【16】Yang P Z, Deng P Z, Xu J et al. Growth of high-quality single crystal of 30 at% Yb∶YAG and its laser performance. Journal of Crystal Growth. 216, 348-351(2000).

【17】Fukuda T, Rudolph P and Uda S. Fiber crystal growth from the melt. Berlin, Heidelberg: Springer. (2004).

【18】Fukuda T and Chani V I. Shaped crystals: growth by micro-pulling-down technique. Berlin, Heidelberg: Springer. (2007).

【19】Shaw L B, Bayya S, Kim W et al. Fabrication of cladded single crystal fibers for all-crystalline fiber lasers. [C]∥Proceedings of 2018 OSA International Conference on Specialty Optical Fibers, July 2-5, 2018, Zurich, Switzerland. Washington, D. C.: OSA. SoW2H, (2018).

【20】Shen Y H. Sapphire fiber thermometer ranging from the room temperature to 1800 ℃. Acta Optica Sinica. 20(1), 83-87(2000).
沈永行. 从室温到1800 ℃全程测温的蓝宝石单晶光纤温度传感器. 光学学报. 20(1), 83-87(2000).

【21】Ye L H, Song L, Li G et al. Growth and characteristics of Ce 3+ ions-doped YAG single-crystal optical fibers for LED white light sources . Acta Optica Sinica. 29(s1), 169-171(2009).
叶林华, 宋丽, 李刚 等. 用于LED白光源的Ce 3+∶YAG单晶光纤的生长与特性 . 光学学报. 29(s1), 169-171(2009).

【22】Wang Y L and Wang Q. Research progress in single-crystal fiber amplifiers. Laser & Optoelectronics Progress. 55(10), (2018).
王雅兰, 王庆. 单晶光纤放大器研究进展. 激光与光电子学进展. 55(10), (2018).

【23】Kim W, Florea C, Baker C et al. Single crystal fibers for high power lasers. Proceedings of SPIE. 8547, (2012).

【24】Nie C D, Bera S and Harrington J A. Growth of single-crystal YAG fiber optics. Optics Express. 24(14), 15522-15527(2016).

【25】Thapa R, Gibson D, Gattass R R et al. Fusion splicing of highly dissimilar YAG crystal fiber and silica fiber with reaction bonding. Optical Materials Express. 6(8), 2560-2566(2016).

【26】Myers J D, Kim W, Shaw L B et al. Development of thin film claddings for single crystal optical fiber. [C]∥2018 Novel Optical Materials and Applications, July 2-5, 2018, Zurich, Switzerland. Washington, D. C.: OSA. NoTu4D, (2018).

【27】Lai C C, Gao W T, Nguyen D H et al. Toward single-mode active crystal fibers for next-generation high-power fiber devices. ACS Applied Materials & Interfaces. 6(16), 13928-13936(2014).

【28】Dubinskii M, Zhang J, Fromzel V et al. Low-loss ‘crystalline-core/crystalline-clad’ (C4) fibers for highly power scalable high efficiency fiber lasers. Optics Express. 26(4), 5092-5101(2018).

【29】Huang K Y, Hsu K Y, Jheng D Y et al. Low-loss propagation in Cr 4+∶YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique . Optics Express. 16(16), 12264-12271(2008).

【30】Sangla D, Martial I, Aubry N et al. High power laser operation with crystal fibers. Applied Physics B. 97(2), 263-273(2009).

【31】Délen X, Piehler S, Didierjean J et al. 250 W single-crystal fiber Yb∶YAG laser. Optics Letters. 37(14), 2898-2900(2012).

【32】Li Y, Miller K, Johnson E G et al. Lasing characteristics of Ho∶YAG single crystal fiber. Optics Express. 24(9), 9751-9756(2016).

【33】Zhang Y M, Qian G Q, Xiao X S et al. A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method. Journal of the American Ceramic Society. 101(4), 1616-1622(2018).

【34】Xie Y Y, Liu Z J, Cong Z H et al. All-fiber-integrated Yb∶YAG-derived silica fiber laser generating 6 W output power. Optics Express. 27(3), 3791-3798(2019).

引用该论文

Tao Wang, Jian Zhang, Na Zhang, Baiyi Wu, Siyuan Wang, Zhitai Jia, Xutang Tao. Research Progress in Preparation of Single Crystal Fiber and Fiber Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170611

王涛, 张健, 张娜, 武柏屹, 王思媛, 贾志泰, 陶绪堂. 单晶光纤制备及单晶光纤激光器研究进展[J]. 激光与光电子学进展, 2019, 56(17): 170611

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF