首页 > 论文 > 中国激光 > 46卷 > 9期(pp:904005--1)

光纤四通道双平衡外差相位检测实验研究

Fiber-Optic Four-Channel Dual-Balanced Heterodyne Phase Detection

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为实现高灵敏度的外差相位检测,提出了一种基于光外差检测原理的光纤四通道双平衡外差相位检测方法。搭建光纤四通道双平衡外差检测光路,采用1/4波片作为相位检测样品,验证分析了光纤四通道双平衡外差相位检测的性能。分析了外差检测中信号调制频率对相位测量结果的影响,结果表明受限于光电接收器件的响应带宽,过高或过低的调制频率均不能有效检测到相位信息。在实验中,最优的信号调制频率范围为 500.5~1550.5 kHz,实际测得的相位均方根为89.1°,标准差为0.3°。在此基础上,分析了双平衡外差干涉中光纤分束比以及耦合透镜的有效接收口径效应对相位检测的影响。当光纤分束比接近1∶1时,得到了较高信噪比下更加精确的检测结果;通过改变耦合透镜的发射角,验证了有效接收口径对接收信号灵敏度的实际影响。

Abstract

This study proposes a fiber-optic four-channel dual-balanced heterodyne phase detection method based on optical heterodyne detection principle to realize high-sensitivity heterodyne phase detection. A fiber-optic four-channel dual-balanced heterodyne detection optical path is experimentally established, and a quarter-wave plate is used as a phase detection sample to verify the detection performance. Further, the influence of the signal modulation frequency on the phase measurement result in heterodyne detection is analyzed. Results reveal that the phase information cannot be effectively detected by too high or too low modulation frequency due to the limitation of the response bandwidth of the photodetector. Fiber splitting ratio in double-balanced heterodyne interference and the effect of the effective receiving aperture of the coupling lens on phase detection are analyzed based on the optimal signal modulation frequency of 500.5-1550.5 kHz and the actual measured phase root-mean-square of 89.1° with a standard deviation of 0.3°. When the fiber splitting ratio is approximately 1∶1, a more accurate detection result with a higher signal-to-noise ratio is obtained. The actual influence of the effective receiving aperture on the sensitivity of the received signal is verified by varying the emission angle of the coupling lens.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0904005

所属栏目:测量与计量

基金项目:国家自然科学基金、上海市青年科技英才扬帆计划;

收稿日期:2019-03-28

修改稿日期:2019-05-17

网络出版日期:2019-09-01

作者单位    点击查看

施剑波:上海大学通信与信息工程学院特种光纤与光接入网省部级共建国家重点实验室培育基地, 上海 200444中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
张娟:上海大学通信与信息工程学院特种光纤与光接入网省部级共建国家重点实验室培育基地, 上海 200444
刘德安:中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049

联系人作者:张娟(juanzhang@staff.shu.edu.cn); 刘德安( liudean@siom.ac.cn);

备注:国家自然科学基金、上海市青年科技英才扬帆计划;

【1】Leirset E, Engan H E and Aksnes A. Heterodyne interferometer for absolute amplitude vibration measurements with femtometer sensitivity. Optics Express. 21(17), 19900-19921(2013).

【2】Gao L, Wang C H, Li Y C et al. Fiber-coupled near-infrared laser heterodyne interferometer with fast optical scanning. Journal of the Optical Society of America B. 27(12), 2499-2504(2010).

【3】Luo Y, Feng G Y, Liu J et al. Vehicle identification technology of laser heterodyne spectral analysis of vibration characteristics. Chinese Journal of Lasers. 41(11), (2014).
罗韵, 冯国英, 刘建 等. 激光外差振动谱提取分析的车辆标识技术. 中国激光. 41(11), (2014).

【4】Wu C M, Jian Z C, Joe S F et al. High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry. Sensors and Actuators B: Chemical. 92(1/2), 133-136(2003).

【5】Yu X L, Zhao L Q, Jiang H et al. Immunosensor based on optical heterodyne phase detection. Sensors and Actuators B: Chemical. 76(1/2/3), 199-202(2001).

【6】Wang S F, Chiu M H, Lai C W et al. High-sensitivity small-angle sensor based on surface plasmon resonance technology and heterodyne interferometry. Applied Optics. 45(26), 6702-6707(2006).

【7】Wang B, Jing Z G, Peng W et al. Phase difference signal processing technology in surface plasmon resonance sensing system. Chinese Journal of Lasers. 42(6), (2015).
王斌, 荆振国, 彭伟 等. 相位表面等离子体共振传感系统中的相差信号处理技术. 中国激光. 42(6), (2015).

【8】Wu C M, Lawall J and Deslattes R D. Heterodyne interferometer with subatomic periodic nonlinearity. Applied Optics. 38(19), 4089-4094(1999).

【9】Hu H J. Zhang C J. Theoretical analysis for relations between nonlinearity errors, PBS in heterodyne interferometer. Applied Mechanics, Materials. 241/242/243/244, 474-477(2012).

【10】Gao S and Yin C Y. High measurement speed dual frequency laser interferometer. Optical Technique. 27(3), 238-239, 246(2001).
高赛, 殷纯永. 高测速双频激光干涉仪. 光学技术. 27(3), 238-239,246(2001).

【11】Zhang W J and Sun Y Q. Phase characteristics of the collinear heterodyne interferometer system. Acta Photonica Sinica. 45(4), (2016).
张文静, 孙运强. 共线外差干涉系统相位特性. 光子学报. 45(4), (2016).

【12】Snyder J J. Wide dynamic range optical power measurement using coherent heterodyne radiometry. Applied Optics. 27(21), 4465-4469(1988).

【13】Migdall A L, Roop B, Zheng Y C et al. Use of heterodyne detection to measure optical transmittance over a wide range. Applied Optics. 29(34), 5136-5144(1990).

【14】Miao J, Zhang X J, Li Z et al. Transmittance and phase measurement via self-calibrated balanced heterodyne detection. Chinese Optics Letters. 16(6), (2018).

【15】Pang Y J, Gao L and Wang C H. Analysis of IQ demodulation and signal noise ratio for 2 μm dual-balanced heterodyne detection. Chinese Journal of Lasers. 39(1), (2012).
庞亚军, 高龙, 王春晖. 2 μm双平衡式外差探测IQ解调与信噪比研究. 中国激光. 39(1), (2012).

【16】Zhang Y N, Wang Y, He X R et al. High-frequency test of infrared detector. Optics & Optoelectronic Technology. 12(2), 19-22(2014).
张亚妮, 汪洋, 贺香荣 等. 红外探测器的高频测试. 光学与光电技术. 12(2), 19-22(2014).

【17】Luo H Y, Ye Q H, Xiong W et al. Study on the interferogram modulation efficiency of spatial heterodyne spectrometer. Acta Optica Sinica. 36(7), (2016).
罗海燕, 叶擎昊, 熊伟 等. 空间外差光谱仪干涉条纹调制度影响分析. 光学学报. 36(7), (2016).

【18】Han J. Bayanheshig, Li W H, et al. Profile evolution of grating masks according to exposure dose and interference fringe contrast in the fabrication of holographic grating. Acta Optica Sinica. 32(3), (2012).
韩建. 巴音贺希格, 李文昊, 等. 全息光栅制作中光栅掩模形状随曝光量及干涉场条纹对比度的变化规律. 光学学报. 32(3), (2012).

【19】Wang C H, Gao L, Pang Y J et al. Experimental investigation for relation between beam splitter coefficient and signal-to-noise ratio of 2 μm balanced coherent system. Acta Optica Sinica. 31(11), (2011).
王春晖, 高龙, 庞亚军 等. 光束分束比对2 μm平衡式相干探测系统信噪比影响的实验研究. 光学学报. 31(11), (2011).

【20】Siegman A E. The antenna properties of optical heterodyne receivers. Applied Optics. 5(10), 1588-1594(1966).

【21】Rider A D, Blakemore C P, Gratta G et al. Single-beam dielectric-microsphere trapping with optical heterodyne detection. Physical Review A. 97(1), (2018).

引用该论文

Jianbo Shi,Juan Zhang,Dean Liu. Fiber-Optic Four-Channel Dual-Balanced Heterodyne Phase Detection[J]. Chinese Journal of Lasers, 2019, 46(9): 0904005

施剑波,张娟,刘德安. 光纤四通道双平衡外差相位检测实验研究[J]. 中国激光, 2019, 46(9): 0904005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF