首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1012001--1)

提高二维S变换轮廓术测量精度的方法

Improving Measurement Accuracy of Two-Dimensional S-Transform Profilometry

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于结构光投影的主动光学三维测量技术具有非接触、全场分析、分辨率高等优点,广泛用于地质勘探、生物医学、机器视觉等领域[1-3]。早期出现的方法主要有相位测量轮廓术(PMP)[4-5]及傅里叶变换轮廓术(FTP)[6-7]。FTP可以从一帧条纹图中计算出被测物体的三维面形信息,测量速度快,适用于实时、动态过程的测量。但当被测物体的高度变化率导致变形条纹的变形度较大时,条纹将出现明显的非平稳特征。采用傅里叶变换处理这类条纹时,频谱混叠问题的出现,会导致出现大的面形重建错误。为了弥补FTP的不足,一些时频分析技术被引入到三维面形测量领域,如窗口傅里叶变换[8-9]、小波变换轮廓术[10-11]以及S变换轮廓术[12-20]等。

Abstract

S-transform profilometry is a three-dimensional shape reconstruction method based on a lossless and reversible time-frequency technology. This method, a multiresolution technique, can reconstruct the three-dimensional shape of the tested object using the phase information demodulated from a single-shot fringe pattern. Herein, we analyze the factors that may affect the accuracy of S-transform profilometry. Piecewise-mean and curve-fitting methods are proposed to eliminate the background intensity of the fringe. In addition, adjusting factors are introduced into the S-transform kernel function to improve the time-frequency resolution. Simulation and experimental results verify that the proposed method exhibits high accuracy of three-dimensional shape reconstruction because of accurate S-transform coefficients.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1012001

所属栏目:仪器,测量与计量

基金项目:国家重大仪器设备开发专项;

收稿日期:2019-04-26

修改稿日期:2019-06-10

网络出版日期:2019-10-01

作者单位    点击查看

韩梦奇:四川大学电子信息学院光电科学技术系, 四川 成都 610064
陈文静:四川大学电子信息学院光电科学技术系, 四川 成都 610064

联系人作者:陈文静(chenwj0409@scu.edu.cn)

备注:国家重大仪器设备开发专项;

【1】Su X Y and Li J T. Information optic. 306-338(1999).
苏显渝, 李继陶. 信息光学. 306-338(1999).

【2】Jin G F and Li J Z. Laser metrology. 337, (1998).
金国藩, 李景镇. 激光测量学. 337, (1998).

【3】Su X Y, Zhang Q C and Chen W J. Three-dimensional imaging based on structured illumination. Chinese Journal of Lasers. 41(2), (2014).
苏显渝, 张启灿, 陈文静. 结构光三维成像技术. 中国激光. 41(2), (2014).

【4】Srinivasan V, Liu H C and Halioua M. Automated phase-measuring profilometry of 3-D diffuse objects. Applied Optics. 23(18), 3105-3108(1984).

【5】He Y H, Cao Y P, Zhong L J et al. Improvement on measuring accuracy of digital phase measuring profilometry by frequency filtering. Chinese Journal of Lasers. 37(1), 220-224(2010).
何宇航, 曹益平, 钟立俊 等. 采用频域滤波提高数字相位测量轮廓术的测量精度. 中国激光. 37(1), 220-224(2010).

【6】Takeda M and Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Applied Optics. 22(24), 3977-3982(1983).

【7】Su X Y and Chen W J. Fourier transform profilometry: a review. Optics and Lasers in Engineering. 35(5), 263-284(2001).

【8】Fu Y H and Chen W J. 2. 7(1):. 39, (2006).
付艳华, 陈文静, 苏显渝. 2. 7(1):. 39, (2006).

【9】Qian K M. Two-dimensional windowed Fourier frames for noise reduction in fringe pattern analysis. Optical Engineering. 44(7), (2005).

【10】Zhang P and Zhang W. Efficient very large scale integration architecture of multi-level discrete wavelet transform. Acta Optica Sinica. 39(4), (2019).
张盼, 张为. 多级离散小波变换的高效超大规模集成架构. 光学学报. 39(4), (2019).

【11】Zhang C and Chen W J. Method for improving measurement accuracy of wavelet transform profilometry. Acta Optica Sinica. 38(7), (2018).
张诚, 陈文静. 提高小波变换轮廓术测量精度的方法. 光学学报. 38(7), (2018).

【12】Stockwell R G, Mansinha L and Lowe R P. Localization of the complex spectrum: the S transform. IEEE Transactions on Signal Processing. 44(4), 998-1001(1996).

【13】Mansinha L, Stockwell R G, Lowe R P et al. Local S-spectrum analysis of 1-D and 2-D data. Physics of the Earth and Planetary Interiors. 103(3/4), 329-336(1997).

【14】Ventosa S, Simon C, Schimmel M et al. The S-transform from a wavelet point of view. IEEE Transactions on Signal Processing. 56(7), 2771-2780(2008).

【15】Jiang M H, Chen W J and Zheng Z P. Research of phase demodulation technique based on S-transform. Acta Optica Sinica. 31(4), (2011).
蒋模华, 陈文静, 郑志平. 基于S变换的解相技术研究. 光学学报. 31(4), (2011).

【16】Zhong M, Chen W J, Su X Y et al. Optical 3D shape measurement profilometry based on 2D S-transform filtering method. Optics Communications. 300, 129-136(2013).

【17】Song M S and Chen W J. Application of two-dimensional S-transform in optical 3D shape measurement. Laser & Optoelectronics Progress. 54(4), (2017).
宋梦洒, 陈文静. 二维S变换在光学三维面形测量中的应用. 激光与光电子学进展. 54(4), (2017).

【18】Zhao W J, Su X Y and Chen W J. Discussion on accurate phase-height mapping in fringe projection profilometry. Optical Engineering. 56(10), (2017).

【19】Pinnegar C R and Mansinha L. The Bi-Gaussian S-transform. Siam Journal on Scientific Computing. 24(5), 1678-1692(2006).

【20】Luo F, Chen W J and Su X Y. Improve measurement range and accuracy of Fourier transform profilometry by Hilbert transform. Laser & Optoelectronics Progress. 52(11), (2015).
骆凤, 陈文静, 苏显渝. 利用Hilbert变换提高傅里叶变换轮廓术的测量范围和精度. 激光与光电子学进展. 52(11), (2015).

【21】Wang T, Chen W J, Zhong M et al. 2D S-transform profilometry based on the structured light projection. Acta Optica Sinica. 32(12), (2012).
王焘, 陈文静, 钟敏 等. 基于结构光投影的二维S变换轮廓术. 光学学报. 32(12), (2012).

引用该论文

Mengqi Han,Wenjing Chen. Improving Measurement Accuracy of Two-Dimensional S-Transform Profilometry[J]. Acta Optica Sinica, 2019, 39(10): 1012001

韩梦奇,陈文静. 提高二维S变换轮廓术测量精度的方法[J]. 光学学报, 2019, 39(10): 1012001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF