首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1011002--1)

光场显微成像微尺度流场三维重建方法研究

Three-Dimensional Reconstruction of Micro-Scale Flow Field Based on Light Field Microscopic Imaging

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

微流控芯片具有液体流动可控、消耗试样和试剂少、分析速度快等优点,近年来广泛应用于生物医学[1-2]、化工[3]及电子集成电路等领域[4],如微流体诊断、化学合成反应及芯片散热。随着微流控芯片应用领域更加广泛和功能越来越复杂,其微尺度通道结构也越来越复杂,实现通道内流体的三维瞬时速度测量对于深入了解流场动力学具有重要意义。由于尺度微小,微尺度通道内流动现象和规律的研究与宏观尺度上有明显差异,这为微流控系统的设计与优化带来较大挑战。准确合理地表征微尺度通道内的三维流动特性,可为微流控芯片设计和性能改善提供参考和指导。微流体瞬时三维全场测速技术是微尺度流动机理和应用研究的重要技术之一。目前,三维显微粒子图像测速(3D Micro-PIV)技术是研究微尺度流场特性最有效的非接触实验方法之一[5]。

Abstract

The existing three-dimensional micro-particle image velocimetry systems obtain the spatial position of tracer particles through scanning or imaging from multiple perspectives, which leads to the complexity of the system and difficulty in making an instantaneous measurement of three-dimensional velocity in micro-scale flow. In this paper, a light field micro-particle image velocimetry technique based on a microlens array is proposed. In this technique, the instantaneous light field information of tracer particles in the micro-scale flow field can be recorded by a single camera in a single photographic exposure. Further, in combination with the point spread function model of the light field microscopic imaging system calculated by wave optics theory, the instantaneous spatial position distribution of tracer particles in the micro-scale flow field can be reconstructed by a deconvolution method. The reconstruction resolution and the spatial position error are analyzed and discussed. Experiments on micro-scale flow field reconstruction are carried out, and the feasibility of the reconstruction method for light field microscopic imaging is verified.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1011002

所属栏目:成像系统

基金项目:国家自然科学基金; 南京市质量技术监督局重点科技计划项目;

收稿日期:2019-04-04

修改稿日期:2019-06-21

网络出版日期:2019-10-01

作者单位    点击查看

宋祥磊:东南大学能源与环境学院能源热转换及其过程测控教育部重点实验室, 江苏 南京 210096
李舒:南京市计量监督检测院科技发展部, 江苏 南京 210037
顾梦涛:东南大学能源与环境学院能源热转换及其过程测控教育部重点实验室, 江苏 南京 210096
张彪:东南大学能源与环境学院能源热转换及其过程测控教育部重点实验室, 江苏 南京 210096
许传龙:东南大学能源与环境学院能源热转换及其过程测控教育部重点实验室, 江苏 南京 210096

联系人作者:许传龙(chuanlongxu@seu.edu.cn)

备注:国家自然科学基金; 南京市质量技术监督局重点科技计划项目;

【1】Rivet C, Lee H, Hirsch A et al. Microfluidics for medical diagnostics and biosensors. Chemical Engineering Science. 66(7), 1490-1507(2011).

【2】Michelsen U. Microfluidics in medical applications. Medical Device Technology. 18(3), 12-14(2007).

【3】Horrocks M H, Tosatto L, Dear A J et al. Fast flow microfluidics and single-molecule fluorescence for the rapid characterization of α-synuclein oligomers. Analytical Chemistry. 87(17), 8818-8826(2015).

【4】Wang G L, Yang D W, Wang Y et al. Heat transfer and friction characteristics of the microfluidic heat sink with variously-shaped ribs for chip cooling. Sensors. 15(4), 9547-9562(2015).

【5】Santiago J G, Wereley S T, Meinhart C D et al. A particle image velocimetry system for microfluidics. Experiments in Fluids. 25(4), 316-319(1998).

【6】Chao S H, Holl M R, Koschwanez J H et al. Velocity measurement in microchannels with a laser confocal microscope and particle linear image velocimetry. Microfluidics and Nanofluidics. 1(2), 155-160(2005).

【7】Lindken R, Westerweel J and Wieneke B. Stereoscopic micro particle image velocimetry. Experiments in Fluids. 41(2), 161-171(2006).

【8】Tien W H, Dabiri D and Hove J R. Color-coded three-dimensional micro particle tracking velocimetry and application to micro backward-facing step flows. Experiments in Fluids. 55(3), (2014).

【9】Ren N, Levoy M, Bredif M et al. 2019-03-25]. http: ∥graphics.stanford.edu/papers/lfcamera/. (2005).

【10】Levoy M, Ng R, Adams A et al. Light field microscopy. ACM Transactions on Graphics. 25(3), 924-934(2006).

【11】Sun F S and Han X. Super-resolution algorithm based on precise color vector constraint of lightfield camera. Acta Optica Sinica. 39(3), (2019).
孙福盛, 韩燮. 光场相机精确色彩矢量约束下的超分辨率算法. 光学学报. 39(3), (2019).

【12】Shi S X, Ding J F, New T H et al. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique. Experiments in Fluids. 58(7), (2017).

【13】Fahringer T W, Lynch K P and Thurow B S. Volumetric particle image velocimetry with a single plenoptic camera. Measurement Science and Technology. 26(11), (2015).

【14】Gershun A. The light field. Massachusetts, Cambridge: Massachusetts Institute of Technology. 51-151(1939).

【15】Levoy M and Hanrahan P. Light field rendering. [C]∥The 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM. 31-42(1996).

【16】Sarder P and Nehorai A. Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Processing Magazine. 23(3), 32-45(2006).

【17】McNally J G, Karpova T, Cooper J et al. . Three-dimensional imaging by deconvolution microscopy. Methods. 19(3), 373-385(1999).

【18】Lucy L B. An iterative technique for the rectification of observed distributions. The Astronomical Journal. 79, 745-754(1974).

【19】Richardson W H. Bayesian-based iterative method of image restoration. Journal of the Optical Society of America. 62(1), 55-59(1972).

【20】Gu M. Advanced optical imaging theory. Berlin, Heidelberg: Springer. 55-59(2000).

【21】Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing. 13(4), 600-612(2004).

【22】Liang Q T. Physical optics. 173-175(2012).
梁铨廷. 物理光学. 173-175(2012).

【23】Deem E A, Zhang Y, Cattafesta L N et al. On the resolution of plenoptic PIV. Measurement Science and Technology. 27(8), (2016).

引用该论文

Xianglei Song,Shu Li,Mengtao Gu,Biao Zhang,Chuanlong Xu. Three-Dimensional Reconstruction of Micro-Scale Flow Field Based on Light Field Microscopic Imaging[J]. Acta Optica Sinica, 2019, 39(10): 1011002

宋祥磊,李舒,顾梦涛,张彪,许传龙. 光场显微成像微尺度流场三维重建方法研究[J]. 光学学报, 2019, 39(10): 1011002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF