首页 > 论文 > 激光与光电子学进展 > 57卷 > 22期(pp:221002--1)

基于亮度模型融合的改进暗通道先验图像去雾算法

An Improved Dark Channel Prior Image Dehazing Algorithm Based on Fusion Luminance Model

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对暗通道先验在天空区域的失效问题,提出了一种基于亮度模型融合的改进暗通道先验图像去雾算法。首先通过Canny算子分割得到天空区域与非天空区域;其次,利用亮度模拟景深,重构亮度透射率,并通过与暗通道透射率的融合构成天空区域透射率,最后的透射率图经由快速引导滤波进行精细化处理;大气光值选择抗干扰能力更强的天空区域中像素强度值前0.1%的像素中值;最后,经由大气散射模型恢复出无雾图像。实验结果表明,该算法针对含雾图像能够有效地恢复出图像的细节并抑制光晕现象,明亮度适宜,颜色自然。

Abstract

An improved dark channel prior image dehazing algorithm based on the fusion luminance model was proposed to deal with the failure of a dark channel prior in the sky. First, sky and non-sky areas were segmented using a Canny operator. Next, luminance transmission was constructed by simulating the depth of the scene using the luminance, which combined with the transmission of the dark channel to form the transmission of the sky area. A fast-guided filter was used to optimize the transmission map. The value of atmospheric light was selected as the median of the top 0.1% of the pixels with strong anti-interference ability. Finally, the haze-free image was restored using the atmospheric scattering model. Experimental results show that the algorithm could effectively recover the details of the image and suppress the halo phenomenon for the haze image including the sky area with appropriate brightness and natural color.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP391

DOI:10.3788/LOP57.221002

所属栏目:图像处理

基金项目:国家自然科学基金、辽宁省教育厅基金项目;

收稿日期:2020-02-18

修改稿日期:2020-03-27

网络出版日期:2020-11-01

作者单位    点击查看

李雅梅:辽宁工程技术大学电气与控制工程学院, 辽宁 葫芦岛 125105
张旭佳:辽宁工程技术大学电气与控制工程学院, 辽宁 葫芦岛 125105
谢秉旺:辽宁工程技术大学电气与控制工程学院, 辽宁 葫芦岛 125105

联系人作者:张旭佳(liyamei518@163.com)

备注:国家自然科学基金、辽宁省教育厅基金项目;

【1】Wang Z D, Jing X, Sun G D, et al. Image dehazing of dark channels based on area contrast constraint [J]. Chinese Journal of Lasers. 2019, 46(8): 0810003.
王振东, 靖旭, 孙国栋, 等. 基于区域对比度约束的暗通道图像去雾 [J]. 中国激光. 2019, 46(8): 0810003.

【2】Wang W, Li B, Zheng J, et al. A fast multiscale Retinex algorithm for color image enhancement[C]∥Proceedings of the IEEE Conference on Wavelet Analysis and Pattern Recognition, August 30-31, 2008, Hong Kong, China. New York: , 2008, 80-85.

【3】Abdullah-Al-wadud M, Kabir M H, Dewan M A A, et al. A dynamic histogram equalization for image contrast enhancement [J]. IEEE Transactions on Consumer Electronics. 2007, 53(2): 593-600.Abdullah-Al-wadud M, Kabir M H, Dewan M A A, et al. A dynamic histogram equalization for image contrast enhancement [J]. IEEE Transactions on Consumer Electronics. 2007, 53(2): 593-600.

【4】Du Y, Guindon B, Cihlar J. Haze detection and removal in high resolution satellite image with wavelet analysis [J]. IEEE Transactions on Geoscience and Remote Sensing. 2002, 40(1): 210-217.Du Y, Guindon B, Cihlar J. Haze detection and removal in high resolution satellite image with wavelet analysis [J]. IEEE Transactions on Geoscience and Remote Sensing. 2002, 40(1): 210-217.

【5】Yang Y, Zhang G Q, Li Y F, et al. Adaptive Gaussian attenuation defogging algorithm based on edge preservation [J]. Laser & Optoelectronics Progress. 2018, 55(8): 081004.
杨燕, 张国强, 李一菲, 等. 基于边缘保持的自适应高斯衰减去雾算法 [J]. 激光与光电子学进展. 2018, 55(8): 081004.

【6】Fattal R. Single image dehazing [J]. ACM Transactions on Graphics. 2008, 27(3): 721-729.

【7】Zhang C, Yang Y. Single image dehazing algorithm based on fusion and Gaussian weighted dark channel [J]. Acta Photonica Sinica. 2019, 48(1): 0110002.
张晨, 杨燕. 基于融合与高斯加权暗通道的单幅图像去雾算法 [J]. 光子学报. 2019, 48(1): 0110002.

【8】Meng G F, Wang Y, Duan J Y, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]∥2013 IEEE International Conference on Computer Vision, December 1-8, 2013, Sydney, NSW, Australia. New York: , 2013, 617-624.

【9】Sun W, Li D J, Liu H J, et al. Fast single image fog removal based on atmospheric scattering model [J]. Optics and Precision Engineering. 2013, 21(4): 1040-1046.

【10】Zhu Q S, Mai J M, Shao L. A fast single image haze removal algorithm using color attenuation prior [J]. IEEE Transactions on Image Processing. 2015, 24(11): 3522-3533.

【11】He K M, Sun J, Tang X O. Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2011, 33(12): 2341-2353.

【12】He K M, Sun J, Tang X O. Guided image filtering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2013, 35(6): 1397-1409.

【13】Chen Y, Guo H G, Ai Y P. Single image dehazing method based on multi-scale convolution neural network [J]. Acta Optica Sinica. 2019, 39(10): 1010001.
陈永, 郭红光, 艾亚鹏. 基于多尺度卷积神经网络的单幅图像去雾方法 [J]. 光学学报. 2019, 39(10): 1010001.

【14】Cai B L, Xu X M, Jia K, et al. DehazeNet: an end-to-end system for single image haze removal [J]. IEEE Transactions on Image Processing. 2016, 25(11): 5187-5198.

【15】Zhu Y Y, Tang G Y, Zhang X Y, et al. Haze removal method for natural restoration of images with sky [J]. Neurocomputing. 2018, 275: 499-510.

【16】Hu Y, Wang K Y, Xu N, et al. Image dehazing by the segmenting Median filter and transmission compensation [J]. Journal of Xidian University (Natural Science). 2018, 45(4): 99-105.
胡妍, 王柯俨, 许宁, 等. 利用分割中值滤波和透射率补偿的图像去雾 [J]. 西安电子科技大学学报(自然科学版). 2018, 45(4): 99-105.

【17】Tarel J P, Hautière N. Fast visibility restoration from a single color or gray level image[C]∥2009 IEEE 12th International Conference on Computer Vision, September 29-October 2, 2009, Kyoto, Japan. New York: , 2009, 2201-2208.

引用该论文

Li Yamei,Zhang Xujia,Xie Bingwang. An Improved Dark Channel Prior Image Dehazing Algorithm Based on Fusion Luminance Model[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221002

李雅梅,张旭佳,谢秉旺. 基于亮度模型融合的改进暗通道先验图像去雾算法[J]. 激光与光电子学进展, 2020, 57(22): 221002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF