首页 > 论文 > 中国激光 > 48卷 > 1期(pp:100001--1)

布里渊光相干域分析技术研究进展

Research Progress in Brillouin Optical Correlation Domain Analysis Technology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

布里渊光相干域分析(BOCDA)技术可以实现长传感距离、高空间分辨率和高速的分布式温度或应变传感,在大型结构健康监测、现代工业等领域具有广阔的应用前景。分别综述了正弦频率调制型BOCDA、相位调制型BOCDA和宽带光源型BOCDA近年来的研究进展,其中宽带光源型BOCDA包括基于放大自发辐射的BOCDA和本课题组提出的混沌激光BOCDA。对比了这些技术的优缺点,分析了BOCDA系统的性能,并对BOCDA技术的发展前景进行了展望。

Abstract

Significance The distributed optical fiber sensor based on Brillouin scattering can continuously measure temperature or strain along the optical fiber and has become a research hotspot at home and abroad. Currently, it is widely used in many fields such as modern industries, civil structural health monitoring, and national defense security. There are four main types of Brillouin distributed optical fiber sensing technologies: Brillouin optical time domain reflectometry (BOTDR),Brillouin optical time domain analysis (BOTDA), Brillouin optical correlation domain reflectometry (BOCDR),and Brillouin optical correlation domain analysis (BOCDA). Among them, the BOCDA has the unique advantages of high spatial resolution, high-speed measurement, and random accessibility of measuring position, so it has extremely high potential application value. According to their different operating principles, this paper reviews the research progress of sine-frequency-modulation BOCDA (sine-FM BOCDA), phase-coded BOCDA, and broadband-source-based BOCDA in recent years. Broadband-source-based BOCDA includes amplified-spontaneous-emission-based BOCDA (ASE-based BOCDA) and chaos-based BOCDA,and the latter is proposed by our group. Additionally, in view of their limiting factors of sensing distance, spatial resolution, and measurement speed, the performance improvement of these BOCDA technologies is analyzed, and their future developments are also prospected.

Progress The BOCDA is a novel distributed sensing method based on stimulated Brillouin scattering (SBS). The interference of the pump wave and the counter-propagating probe wave results in stimulated Brillouin acoustic field through electrostriction effect. The two waves are modulated in phase or frequency by the same waveform, and their frequencies are detuned around the Brillouin frequency offset of the fiber. The magnitude of the SBS acoustic field is stimulated at a specific position referred as correlation peak (CP), and the spatial resolution is only determined by the full-width at half-maximum (FWHM) of the CP ( Fig. 1). Consequently, compared to time-domain technology with inherent predicament of 1-m-spatial resolution, the correlation-based method does not suffer from the spatial resolution limitation. For the sine-FM BOCDA, the highest spatial resolution (1.6 mm) is achieved by applying the beat lock-in detection scheme, but the sensing distance is limited to less than 5 m ( Fig. 4). In order to increase the sensing distance, a differential measurement scheme with dual modulation and temporal gating is proposed to achieve a measurement range of 10.5 km, but the measurement time is too long [ Fig. 7 (b)]. Later, time-domain data processing is proposed in the differential measurement BOCDA system, which effectively improves the measurement speed of the system ( Fig. 8). For the phase-coded BOCDA, by using the short optical pulse source modulated by the pseudorandom sequence (PRBS), a highest spatial resolution (0.64 mm) of the current BOCDA system is realized ( Fig. 13). By using Golomb codes to replace PRBS and applying temporal gating, the coding noise is effectively suppressed ( Fig. 14), and then the optimal phase-coded BOCDA system based on temporal gating is proposed, by which the longest sensing distance (17.5 km) and the maximum number of resolution points (beyond 10 6) are achieved. The improvement of the measurement speed of the phase-coded BOCDA system is mainly studied from three aspects: the decrease of the number of averaging (incoherent sequence compression, Fig. 15), the reduction of the position addressing (double-pulse-pair analysis, Fig. 16), and the elimination of frequency scanning (transient SBS gain analysis without spectral scanning, Fig. 17). Therefore, the measurement speed is significantly promoted, and the dynamic monitoring could be further explored. For the broadband-source-based BOCDA, the millimeter-level spatial resolution could be easily achieved because the FWHM of the CP is determined by the source bandwidth. Consequently, spatial resolution of 4 mm is realized with ASE source of 25 GHz despite that the sensing distance is only 5 cm ( Fig. 19). In order to get better performance, the chaos-based BOCDA is proposed by our group, higher resolution of 3.5 mm is achieved with chaotic laser of 10 GHz, and the sensing distance reaches 165 m (Figs. 23--24). Moreover, by suppressing the time delay signature and using the time-gated scheme, the noise background is largely inhibited, and the sensing distance is greatly improved to 10.2 km with a spatial resolution of 9 cm ( Fig. 25).

Conclusion and Prospect The sine-FM BOCDA system is easy to achieve high spatial resolution by adjusting higher modulation amplitude and has preferable signal-to-noise ratio (SNR). However, the direct modulation of semiconductor laser induces frequency modulation superimposed on amplitude modulation through carrier density modulation and temperature change effects, which leads to a predicament that is hardly to set both modulation frequency and modulation amplitude at a higher bandwidth simultaneously. In order to obtain mm-order spatial resolution, a special laser diode (LD), three-electrode LD, is used as light source, and intensity modulation (IM) is used synchronously to compensate for intensity chirp, which leads to complexity and high cost of the system. Phase-coded BOCDA system combines long sensing distance with high spatial resolution, and the measurement speed is also greatly improved. The off-peak Brillouin interactions will introduce coding noise and degrade the sensing performance of the system, although the application of Golomb codes and temporal gating has effectively improved the SNR. In addition, to obtain a higher spatial resolution, a higher modulation rate is required, but high-performance modulation devices are seldom available, which will further increase the cost and the complexity of the system. The spatial resolution of the broadband-source-based BOCDA system can easily reach millimeter level. However, the ASE-based BOCDA system has poor SNR and the sensing distance is largely limited. In the chaos-based BOCDA, the spatial resolution is theoretically determined by the chaotic bandwidth. The chaos of 10 GHz is easily obtained, and the sensing distance is successfully extended to 10.2 km. However, the main weakness of the current chaos-based BOCDA is the location of a single CP scanned by the variable delay line, which results in a time-consuming system and poor practicability. In general, these BOCDA technologies involved in this paper have made a significant progress and they have been used for static temperature or strain measurement. In modern industry, the demand for distributed measurement of dynamic parameter continues to increase. Domestic and foreign researchers have made some progresses in these aspects, including fast frequency sweeping and slope-assisted method, but the dynamic strain range and vibration frequency still have great potential for development. In summary, the BOCDA will develop in the direction of long sensing distance, high spatial resolution, and high-speed real-time measurement, and has broad application prospects in modern industry and civil structural health monitoring.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN29

DOI:10.3788/CJL202148.0100001

所属栏目:综述

基金项目:国家自然科学基金(61527819,61875146)、山西省重点研发计划(高新领域)(201903D121177, 201803D121064)、山西省“三晋学者”特聘教授(专家)支持计划(201617)

收稿日期:2020-07-22

修改稿日期:2020-09-04

网络出版日期:2021-01-01

作者单位    点击查看

胡鑫鑫:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024
王亚辉:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院, 山西 太原 030024
赵乐:太原理工大学物理与光电工程学院, 山西 太原 030024
张倩:太原理工大学物理与光电工程学院, 山西 太原 030024
张明江:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院, 山西 太原 030024
张建忠:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院, 山西 太原 030024
乔丽君:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024
王涛:太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024
高少华:太原理工大学物理与光电工程学院, 山西 太原 030024

联系人作者:张明江(zhangmingjiang@tyut.edu.cn)

【1】Kurashima T, Horiguchi T, Tateda M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers [J]. Optics Letters. 1990, 15(18): 1038-1040.Kurashima T, Horiguchi T, Tateda M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers [J]. Optics Letters. 1990, 15(18): 1038-1040.

【2】Bao X Y, Webb D J, Jackson D A. Recent progress in distributed fiber optic sensors based upon Brillouin scattering [J]. Proceedings of SPIE. 1995, 2507: 175-185.Bao X Y, Webb D J, Jackson D A. Recent progress in distributed fiber optic sensors based upon Brillouin scattering [J]. Proceedings of SPIE. 1995, 2507: 175-185.

【3】Lee B. Review of the present status of optical fiber sensors [J]. Optical Fiber Technology. 2003, 9(2): 57-79.Lee B. Review of the present status of optical fiber sensors [J]. Optical Fiber Technology. 2003, 9(2): 57-79.

【4】Motil A, Bergman A, Tur M. State of the art of Brillouin fiber-optic distributed sensing [J]. Optics & Laser Technology. 2016, 78: 81-103.

【5】Barrias A, Casas J R, Villalba S. A review of distributed optical fiber sensors for civil engineering applications [J]. Sensors. 2016, 16(5): 748.

【6】Ukil A, Braendle H, Krippner P. Distributed temperature sensing: review of technology and applications [J]. IEEE Sensors Journal. 2012, 12(5): 885-892.Ukil A, Braendle H, Krippner P. Distributed temperature sensing: review of technology and applications [J]. IEEE Sensors Journal. 2012, 12(5): 885-892.

【7】Hotate K. Fiber distributed Brillouin sensing with optical correlation domain techniques [J]. Optical Fiber Technology. 2013, 19(6): 700-719.

【8】Zhou Z C, Wang X L, Su R T, et al. Application of distributed fiber sensing in fiber lasers [J]. Laser & Optoelectronics Progress. 2016, 53(8): 080006.
周子超, 王小林, 粟荣涛, 等. 分布式光纤传感在光纤激光中的应用研究 [J]. 激光与光电子学进展. 2016, 53(8): 080006.

【9】Zhang Z L, Gao L, Sun Y Y, et al. Strain transfer law of distributed optical fiber sensor [J]. Chinese Journal of Lasers. 2019, 46(4): 0410001.
章征林, 高磊, 孙阳阳, 等. 分布式光纤传感器应变传递规律研究 [J]. 中国激光. 2019, 46(4): 0410001.

【10】Li B, Luo L Q, Yu Y F, et al. Dynamic strain measurement using small gain stimulated Brillouin scattering in STFT-BOTDR [J]. IEEE Sensors Journal. 2017, 17(9): 2718-2724.

【11】Ma Z, Zhang M J, Liu Y, et al. Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum [J]. IEEE Photonics Journal. 2015, 7(4): 6100407.

【12】Shimizu K, Horiguchi T, Koyamada Y, et al. Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber [J]. Optics Letters. 1993, 18(3): 185-187.

【13】Wang F, Zhan W W, Zhang X P, et al. Improvement of spatial resolution for BOTDR by iterative subdivision method [J]. Journal of Lightwave Technology. 2013, 31(23): 3663-3667.

【14】Dong Y K, Chen L, Bao X Y. Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs [J]. Journal of Lightwave Technology. 2012, 30(8): 1161-1167.

【15】Dong Y K, Xu P B, Zhang H Y, et al. Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis [J]. Optics Express. 2014, 22(22): 26510-26516.

【16】Dong Y K, Zhang H Y, Chen L, et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair [J]. Applied Optics. 2012, 51(9): 1229-1235.

【17】Hu J, Zhang X P, Yao Y G, et al. A BOTDA with break interrogation function over 72 km sensing length [J]. Optics Express. 2013, 21(1): 145-153.

【18】Xu P B, Dong Y K, Zhang J W, et al. Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis [J]. Optics Express. 2015, 23(17): 22714-22722.

【19】Dong Y K, Ba D X, Jiang T F, et al. High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation [J]. IEEE Photonics Journal. 2013, 5(3): 2600407.

【20】Hotate K. Recent achievements in BOCDA/BOCDR[C]//13th IEEE Sensors Conference, November 2-5, 2014. Valencia, Spain. New York: , 2014, 14862415.

【21】Lee H, Hayashi N, Mizuno Y, et al. Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept [J]. IEEE Photonics Journal. 2016, 8(3): 6802807.

【22】Mizuno Y, Hayashi N, Fukuda H, et al. Ultrahigh-speed distributed Brillouin reflectometry [J]. Light: Science & Applications. 2016, 5(12): e16184.

【23】Mizuno Y, Zou W W, He Z Y, et al. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR) [J]. Optics Express. 2008, 16(16): 12148-12153.

【24】Hotate K. Fiber distributed Brillouin sensing with optical correlation domain techniques [J]. Optical Fiber Technology. 2013, 19(6): 700-719.

【25】Hotate K, Tanaka M. Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique [J]. IEEE Photonics Technology Letters. 2002, 14(2): 179-181.

【26】Ong S S L, Hotate K. Dynamic strain measurement at 50 Hz using a Brillouin optical correlation domain analysis based on fiber optic sensor[C]//CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE Cat. No.03TH8671), December 15-19, 2003, Taipei, Taiwan, China. New York: , 2003, 7993564.

【27】Yamauchi T, Hotate K. Distributed and dynamic strain measurement by BOCDA with time-division pump-probe generation scheme[C]//Conference on Lasers and Electro-Optics, 2004. May 16-21, 2004, San Francisco, CA, USA. New York: , 2004, 8281648.

【28】Zadok A, Antman Y, Primerov N, et al. Random-access distributed fiber sensing [J]. Laser & Photonics Reviews. 2012, 6(5): L1-L5.

【29】Song K Y, Hotate K. Distributed fiber strain sensor with 1-kHz sampling rate based on Brillouin optical correlation domain analysis [J]. IEEE Photonics Technology Letters. 2007, 19(23): 1928-1930.

【30】Mizuno Y, He Z Y, Hotate K. Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme [J]. Optics Express. 2009, 17(11): 9040-9046.

【31】Boyd R W. Nonlinear optics[M]. New York: , 2007.

【32】Agrawal G P. Nonlinear fiber optics[M]. New York: , 2007.

【33】Hotate K, Hasegawa T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique: proposal, experiment and simulation [J]. IEICE Transactions on Electronics. 2000, 83(3): 405-412.

【34】Horiguchi T, Shimizu K, Kurashima T, et al. Development of a distributed sensing technique using Brillouin scattering [J]. Journal of Lightwave Technology. 1995, 13(7): 1296-1302.

【35】Zhao L J, Wang H Q, Xu Z N, et al. Analysis of factors affecting accuracy of Brillouin frequency shift extraction based on similarity matching [J]. Chinese Journal of Lasers. 2020, 47(5): 0506003.
赵丽娟, 王贺晴, 徐志钮, 等. 基于相似匹配方法的光纤布里渊频移提取准确性影响因素分析 [J]. 中国激光. 2020, 47(5): 0506003.

【36】Wang T, Tian F, Tang W Q, et al. Brillouin frequency shift extraction method for distributed optical fiber temperature sensing system [J]. Laser & Optoelectronics Progress. 2019, 56(17): 170631.
王婷, 田凤, 汤文青, 等. 分布式光纤温度传感系统的布里渊频移提取方法 [J]. 激光与光电子学进展. 2019, 56(17): 170631.

【37】Principles and applications of nonlinear fiber optics[M]. Jia D F: Yu Z H, et al, Transl. 2nd ed. Beijing: Electronic Industry Press, 2010, 245-265.
Agrawal G P, Agrawal Govind P. 非线性光纤光学原理及应用[M]. 贾东方: 余震虹, 等, 译. 2版. 北京: 电子工业出版社, 2010, 245-265.

【38】Cohen R, London Y, Antman Y, et al. Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission [J]. Optics Express. 2014, 22(10): 12070-12078.

【39】Alahbabi M N, Cho Y T, Newson T P. 150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification [J]. Journal of the Optical Society of America B. 2005, 22(6): 1321-1324.

【40】Zadok A, Antman Y, Primerov N, et al. Random-access distributed fiber sensing [J]. Laser & Photonics Reviews. 2012, 6(5): L1-L5.

【41】Denisov A, Soto M A, Thévenaz L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration [J]. Light, Science & Applications. 2016, 5(5): e16074.

【42】Elooz D, Antman Y, Levanon N, et al. High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis [J]. Optics Express. 2014, 22(6): 6453-6463.

【43】London Y, Antman Y, Preter E, et al. Brillouin optical correlation domain analysis addressing 440000 resolution points [J]. Journal of Lightwave Technology. 2016, 34(19): 4421-4429.

【44】Song K Y, He Z Y, Hotate K. Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis [J]. Optics Letters. 2006, 31(17): 2526-2528.

【45】Wang Y H, Zhang M J, Zhang J Z, et al. Millimeter-level-spatial-resolution Brillouin optical correlation-domain analysis based on broadband chaotic laser [J]. Journal of Lightwave Technology. 2019, 37(15): 3706-3712.

【46】Song K Y, He Z Y, Hotate K. Effects of intensity modulation of light source on Brillouin optical correlation domain analysis [J]. Journal of Lightwave Technology. 2007, 25(5): 1238-1246.

【47】Jeong J H, Lee K, Song K Y, et al. Differential measurement scheme for Brillouin optical correlation domain analysis [J]. Optics Express. 2012, 20(24): 27094-27101.

【48】Hotate K. A correlation-based continuous-wave technique for measuring Brillouin gain spectrum distribution along an optical fiber with centimeter-order spatial resolution [J]. Proceedings of SPIE. 2000, 4185: 418509.

【49】Song K Y, Hotate K. Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator [J]. IEEE Photonics Technology Letters. 2006, 18(3): 499-501.

【50】Kim Y H, Lee K, Song K Y. Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement [J]. Optics Express. 2015, 23(26): 33241-33248.

【51】Song K Y, He Z Y, Hotate K. Brillouin optical correlation domain analysis system with kilometer measurement range based on intensity modulation scheme[C]//2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, May 21-26, 2006, Long Beach, CA, USA. New York: , 2006, 1-2.

【52】Song K Y, He Z Y, Hotate K. Optimization of Brillouin optical correlation domain analysis system based on intensity modulation scheme [J]. Optics Express. 2006, 14(10): 4256-4263.

【53】Wang B, Fan X Y, Fu Y X, et al. Enhancement of strain/temperature measurement range and spatial resolution in Brillouin optical correlation domain analysis based on convexity extraction algorithm [J]. IEEE Access. 2019, 7: 32128-32136.

【54】Lee H, Mizuno Y, Nakamura K. Detection of 2-mm-long strained section in silica fiber using slope-assisted Brillouin optical correlation-domain reflectometry [J]. Japanese Journal of Applied Physics. 2018, 57(2): 020303.

【55】Mizuno Y, He Z Y, Hotate K. Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme [J]. Optics Express. 2009, 17(11): 9040-9046.

【56】Wang B, Fan X Y, Liu Q W, et al. Increasing effective sensing points of Brillouin optical correlation domain analysis using four-wave-mixing process [J]. Proceedings of SPIE. 2017, 1032: 103238K.

【57】Jeong J H, Lee K I, Jeong J M, et al. Measurement range enlargement in Brillouin optical correlation domain analysis using multiple correlation peaks [J]. Journal of the Optical Society of Korea. 2012, 16(3): 210-214.

【58】Jeong J H, Lee K, Song K Y, et al. Bidirectional measurement for Brillouin optical correlation domain analysis [J]. Optics Express. 2012, 20(10): 11091-11096.

【59】Jeong J H, Lee S B, Jhon Y M, et al. Extension of measurement range in Brillouin optical correlation domain analysis by pump-probe switching [J]. Applied Physics B. 2014, 116(1): 91-96.

【60】Hotate K, Arai H. Enlargement of measurement range of simplified BOCDA fiber-optic distributed strain sensing system using a temporal gating scheme [J]. Proceedings of SPIE. 2005, 5855: 184-187.

【61】Hotate K, Arai H, Song K Y. Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme [J]. SICE Journal of Control, Measurement, and System Integration. 2008, 1(4): 271-274.

【62】Ryu G, Kim G T, Song K Y, et al. Brillouin optical correlation domain analysis enhanced by time-domain data processing for concurrent interrogation of multiple sensing points [J]. Journal of Lightwave Technology. 2017, 35(24): 5311-5316.

【63】Ryu G, Kim G T, Song K Y, et al. BOCDA system enhanced by concurrent interrogation of multiple correlation peaks with a 10 km sensing range[C]//2017 25th Optical Fiber Sensors Conference (OFS), April 24-28, 2017, Jeju, South Korea. New York: , 2017, 1-4.

【64】Antman Y, Primerov N, Sancho J, et al. Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps [J]. Optics Express. 2012, 20(7): 7807-7821.

【65】Antman Y, Levanon N, Zadok A. Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves [J]. Optics Letters. 2012, 37(24): 5259-5261.

【66】Ba D X, Li Y, Yan J L, et al. Phase-coded Brillouin optical correlation domain analysis with 2-mm resolution based on phase-shift keying [J]. Optics Express. 2019, 27(25): 36197-36205.

【67】Matsumoto M, Akai S. High-spatial-resolution Brillouin optical correlation domain analysis using short-pulse optical sources [J]. Journal of Lightwave Technology. 2019, 37(24): 6007-6014.

【68】Zhang M J, Bao X Y, Chai J, et al. Impact of Brillouin amplification on the spatial resolution of noise-correlated Brillouin optical reflectometry [J]. Chinese Optics Letters. 2017, 15(8): 080603.

【69】Denisov A, Soto M A, Thevenaz L. Time gated phase-correlation distributed Brillouin fiber sensor [J]. Proceedings of SPIE. 2013, 8794: 87943I.

【70】Antman Y, Yaron L, Langer T, et al. Experimental demonstration of localized Brillouin gratings with low off-peak reflectivity established by perfect Golomb codes [J]. Optics Letters. 2013, 38(22): 4701-4704.

【71】Golomb S W. Two-valued sequences with perfect periodic autocorrelation [J]. IEEE Transactions on Aerospace and Electronic Systems. 1992, 28(2): 383-386.

【72】Antman Y, Yaron L, Langer T, et al. Variable delay of Gbit/s data using coded Brillouin dynamic gratings [J]. Proceedings of SPIE. 2014, 8998: 89980W.

【73】Elooz D, Antman Y, Zadok A. Combined time-domain and correlation-domain Brillouin analysis with 1600 meters range and 2 centimeters resolution [J]. Proceedings of SPIE. 2014, 9157: 91576O.

【74】Denisov A, Soto M A. 9157: 9157D2 [J]. Thevenaz L. 1000000 resolved points along a Brillouin distributed fibre sensor. Proceedings of SPIE. 2014.

【75】London Y, Antman Y, Cohen R, et al. High-resolution long-range distributed Brillouin analysis using dual-layer phase and amplitude coding [J]. Optics Express. 2014, 22(22): 27144-27158.

【76】Levanon N, Cohen I, Arbel N, et al. Non-coherent pulse compression-aperiodic and periodic waveforms [J]. IET Radar, Sonar & Navigation. 2016, 10(1): 216-224.

【77】Shlomi O, Preter E, Ba D, et al. Double-pulse pair Brillouin optical correlation-domain analysis [J]. Optics Express. 2016, 24(23): 26867-26876.

【78】Dong Y K, Zhang H Y, Chen L, et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair [J]. Applied Optics. 2012, 51(9): 1229-1235.

【79】Preter E, Ba D X, London Y, et al. High-resolution Brillouin optical correlation domain analysis with no spectral scanning [J]. Optics Express. 2016, 24(24): 27253-27267.

【80】Cohen R, London Y, Antman Y, et al. Few millimeter-resolution Brillouin optical correlation domain analysis using amplified-spontaneous-emission pump and signal waves [J]. Proceedings of SPIE. 2014, 9157: 91576B.

【81】Santagiustina M, Ursini L. Dynamic Brillouin gratings permanently sustained by chaotic lasers [J]. Optics Letters. 2012, 37(5): 893-895.

【82】Zhang J Z, Li Z P, Zhang M J, et al. Characterization of Brillouin dynamic grating based on chaotic laser [J]. Optics Communications. 2017, 396: 210-215.

【83】Zhang J Z, Zhang M T, Zhang M J, et al. Chaotic Brillouin optical correlation-domain analysis [J]. Optics Letters. 2018, 43(8): 1722-1725.

【84】Wang Y C, Kong L Q, Wang A B, et al. Coherence length tunable semiconductor laser with optical feedback [J]. Applied Optics. 2009, 48(5): 969-973.

【85】Zhang J Z, Feng C K, Zhang M J, et al. Brillouin optical correlation domain analysis based on chaotic laser with suppressed time delay signature [J]. Optics Express. 2018, 26(6): 6962-6972.

【86】Zhang J, Wang Y, Zhang M, et al. Time-gated chaotic Brillouin optical correlation domain analysis [J]. Optics Express. 2018, 26(13): 17597-17607.

【87】Qiao L, Lü T, Xu Y, et al. Generation of flat wideband chaos based on mutual injection of semiconductor lasers [J]. Optics Letters. 2019, 44(22): 5394-5397.

【88】Yang Q, Qiao L J, Zhang M J, et al. Generation of a broadband chaotic laser by active optical feedback loop combined with a high nonlinear fiber [J]. Optics Letters. 2020, 45(7): 1750-1753.

【89】Zhang M J, Xu Y H, Zhao T, et al. A hybrid integrated short-external-cavity chaotic semiconductor laser [J]. IEEE Photonics Technology Letters. 2017, 29(21): 1911-1914.

【90】Dong X Y, Wang A B, Zhang J G, et al. Combined attenuation and high-resolution fault measurements using Chaos-OTDR [J]. IEEE Photonics Journal. 2015, 7(6): 684006.

【91】Zhang C Y, Kishi M, Hotate K. 5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis [J]. Applied Physics Express. 2015, 8(4): 042501.

【92】Wang B, Fan X Y, Fu Y X, et al. Dynamic strain measurement with kHz-level repetition rate and centimeter-level spatial resolution based on Brillouin optical correlation domain analysis [J]. Optics Express. 2018, 26(6): 6916-6928.

【93】Wang Y H, Zhao L, Zhang M J, et al. Dynamic strain measurement by a single-slope-assisted chaotic Brillouin optical correlation-domain analysis [J]. Optics Letters. 2020, 45(7): 1822-1825.

【94】Zhao L, Wang Y H, Hu X X, et al. Effect of chaotic time delay signature on Brillouin gain spectrum in the slope-assisted chaotic BOCDA [J]. Optics Express. 2020, 28(12): 18189-18201.

引用该论文

Hu Xinxin,Wang Yahui,Zhao Le,Zhang Qian,Zhang Mingjiang,Zhang Jianzhong,Qiao Lijun,Wang Tao,Gao Shaohua. Research Progress in Brillouin Optical Correlation Domain Analysis Technology[J]. Chinese Journal of Lasers, 2021, 48(1): 0100001

胡鑫鑫,王亚辉,赵乐,张倩,张明江,张建忠,乔丽君,王涛,高少华. 布里渊光相干域分析技术研究进展[J]. 中国激光, 2021, 48(1): 0100001

被引情况

【1】李钢敏,李致远,李正冉,王锦民,夏历,杨曌,李微. 基于表面等离子体共振的高灵敏度光纤微流控芯片. 中国激光, 2021, 48(1): 106002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF