首页 > 论文 > 光学学报 > 40卷 > 18期(pp:1806003--1)

基于稀疏度自适应和位置指纹的可见光定位算法

Visible Light Positioning Algorithm Based on Sparsity Adaptive and Location Fingerprinting

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于可见光通信的指纹定位,提出一种低复杂度、稀疏度自适应的压缩感知算法。首先,利用位置指纹的稀疏性,将定位问题转换为稀疏矩阵的重构问题。其次,根据重构的残差值,自适应地计算近邻值。最后,详细分析指纹采样间距、信噪比、调制带宽及发射功率对定位误差的影响,详细分析所提定位算法的时间复杂度、最优近邻值的分布、发光二极管个数及最大近邻指纹数对定位误差的影响。仿真结果表明,所提定位算法的平均计算时间低、定位误差小,当信噪比为10 dB,指纹点之间的间距为40 cm时,所提定位算法的平均定位误差为1.56 cm,显著低于现有的同类算法。

Abstract

In this paper, a low-complexity, sparsity adaptive compressed sensing algorithm is proposed based on fingerprint localization of visible light communication. First, the localization problem is transformed into a sparse matrix reconstruction problem based on the sparsity of location fingerprints. Second, the nearest neighbor value is adaptively calculated based on the reconstructed residual value. Finally, the impact of fingerprint sampling interval, signal-to-noise ratio, modulation bandwidth, and transmission power on positioning errors are analyzed in detail. Moreover, the time complexity, distribution of the optimal nearest neighbor values, number of the light-emitting diodes, and maximum number of nearest neighbor fingerprints of the proposed positioning algorithm on positioning errors are also analyzed. The simulation results show that the proposed positioning algorithm has comparatively low average calculation time and small positioning error. When the signal-to-noise ratio and the distance between the fingerprints are 10 dB and 40 cm, respectively, the average positioning error of the proposed positioning algorithm is 1.56 cm, which is significantly lower than those of existing algorithms.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:TN929.12

DOI:10.3788/AOS202040.1806003

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金、国家自然科学基金促进海峡联合基金、福建省科技计划、福建省高校产学合作项目、福建省海洋经济发展补助资金、福建省光电传感应用工程技术研究中心开放课题;

收稿日期:2020-05-08

修改稿日期:2020-06-11

网络出版日期:2020-09-01

作者单位    点击查看

徐世武:福建师范大学医学光电科学与技术教育部重点实验室暨福建省光子技术重点实验室, 福建 福州 350007福建师范大学协和学院, 福建 福州 350117
吴怡:福建师范大学医学光电科学与技术教育部重点实验室暨福建省光子技术重点实验室, 福建 福州 350007
王徐芳:福建师范大学医学光电科学与技术教育部重点实验室暨福建省光子技术重点实验室, 福建 福州 350007

联系人作者:吴怡(wuyi@fjnu.edu.cn); 王徐芳(fzwxf@fjnu.edu.cn);

备注:国家自然科学基金、国家自然科学基金促进海峡联合基金、福建省科技计划、福建省高校产学合作项目、福建省海洋经济发展补助资金、福建省光电传感应用工程技术研究中心开放课题;

【1】Zafari F, Gkelias A, Leung K K. A survey of indoor localization systems and technologies [J]. IEEE Communications Surveys & Tutorials. 2019, 21(3): 2568-2599.

【2】Zhuang Y, Hua L C, Qi L N, et al. A survey of positioning systems using visible LED lights [J]. IEEE Communications Surveys & Tutorials. 2018, 20(3): 1963-1988.

【3】Wu Y X, Liu X W, Guan W P, et al. High-speed 3D indoor localization system based on visible light communication using differential evolution algorithm [J]. Optics Communications. 2018, 424: 177-189.

【4】Gu W J, Aminikashani M, Deng P, et al. Impact of multipath reflections on the performance of indoor visible light positioning systems [J]. Journal of Lightwave Technology. 2016, 34(10): 2578-2587.

【5】Mathias L C, de Melo L F, Abrao T. 3-D localization with multiple LEDs lamps in OFDM-VLC system [J]. IEEE Access. 2019, 7: 6249-6261.

【6】Zhou B P, Lau V, Chen Q C, et al. Simultaneous positioning and orientating for visible light communications: algorithm design and performance analysis [J]. IEEE Transactions on Vehicular Technology. 2018, 67(12): 11790-11804.

【7】Cai Y, Guan W P, Wu Y X, et al. Indoor high precision three-dimensional positioning system based on visible light communication using particle swarm optimization [J]. IEEE Photonics Journal. 2017, 9(6): 7908120.

【8】Guo X S, Shao S H, Ansari N, et al. Indoor localization using visible light via fusion of multiple classifiers [J]. IEEE Photonics Journal. 2017, 9(6): 7803716.

【9】Lovón-Melgarejo J, Castillo-Cara M, Huarcaya-Canal O, et al. Comparative study of supervised learning and metaheuristic algorithms for the development of bluetooth-based indoor localization mechanisms [J]. IEEE Access. 2019, 7: 26123-26135.

【10】Li F M, Zhang T, Liu K, et al. An indoor positioning method based onrange measuring and location fingerprinting [J]. Chinese Journal of Computers. 2019, 42(2): 339-350.
李方敏, 张韬, 刘凯, 等. 基于距离测量和位置指纹的室内定位方法研究 [J]. 计算机学报. 2019, 42(2): 339-350.

【11】Hu J S, Liu D W, Yan Z, et al. Experimental analysis on weight K-nearest neighbor indoor fingerprint positioning [J]. IEEE Internet of Things Journal. 2019, 6(1): 891-897.

【12】Van M T, Tuan N V, Son T T, et al. Weighted K-nearest neighbour model for indoor VLC positioning [J]. IET Communications. 2017, 11(6): 864-871.

【13】Zhao C H, Zhang H M, Song J. Fingerprint based visible light indoor localization method [J]. Chinese Journal of Lasers. 2018, 45(8): 0806002.
赵楚韩, 张洪明, 宋健. 基于指纹的室内可见光定位方法 [J]. 中国激光. 2018, 45(8): 0806002.

【14】Xu S W, Wu Y, Su G D. Fingerprint matching and localization algorithm based on orthogonal frequencydivision multiplexing modulation for visible light communication [J]. Laser & Optoelectronics Progress. 2019, 56(9): 090601.
徐世武, 吴怡, 苏国栋. 基于正交频分复用调制的可见光通信指纹匹配定位算法 [J]. 激光与光电子学进展. 2019, 56(9): 090601.

【15】Alam F, Chew M T, Wenge T, et al. An accurate visible light positioning system using regenerated fingerprint database based on calibrated propagation model [J]. IEEE Transactions on Instrumentation and Measurement. 2019, 68(8): 2714-2723.

【16】Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory. 2006, 52(4): 1289-1306.

【17】Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory. 2007, 53(12): 4655-4666.

【18】Ajmani M, et al. Visible light communications-based indoor positioning via compressed sensing [J]. IEEE Communications Letters. 2018, 22(7): 1410-1413.

【19】Zhang R, Zhong W D, Qian K M, et al. A reversed visible light multitarget localization system via sparse matrix reconstruction [J]. IEEE Internet of Things Journal. 2018, 5(5): 4223-4230.

【20】Wang P F, Guan W P, Wen S S, et al. High precision indoor visible three-dimensional positioning system based on immune algorithm [J]. Acta Optica Sinica. 2018, 38(10): 1006007.
王鹏飞, 关伟鹏, 文尚胜, 等. 基于免疫算法的高精度室内可见光三维定位系统 [J]. 光学学报. 2018, 38(10): 1006007.

【21】Komine T, Nakagawa M. Fundamental analysis for visible-light communication system using LED lights [J]. IEEE Transactions on Consumer Electronics. 2004, 50(1): 100-107.

引用该论文

Xu Shiwu,Wu Yi,Wang Xufang. Visible Light Positioning Algorithm Based on Sparsity Adaptive and Location Fingerprinting[J]. Acta Optica Sinica, 2020, 40(18): 1806003

徐世武,吴怡,王徐芳. 基于稀疏度自适应和位置指纹的可见光定位算法[J]. 光学学报, 2020, 40(18): 1806003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF