首页 > 论文 > 光学学报 > 40卷 > 18期(pp:1811001--1)

相干调制成像技术的迭代收敛性及重建唯一性

Iterative Convergence and Reconstruction Uniqueness of Coherent Modulation Imaging

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

将相干调制成像(CMI)迭代过程等效为梯度搜索算法,建立了CMI收敛模型,从解方程角度提出为保证重建结果的唯一性需要满足的基本条件,即有调制板时光斑非0点数是无调制板时光斑非0点数的2倍,或有调制板时放大λL(λ为波长, L为衍射距离)倍后的调制板频谱截止宽度与无调制板时光斑截止宽度的比值至少为0.414。通过模拟计算进行了很好的验证。该研究为CMI的进一步优化提供了理论依据。

Abstract

The iteration progress of coherent modulation imaging (CMI) is equivalent to gradient search algorithm, and a CMI convergence model is established. From the perspective of solving equations, the basic conditions to ensure the uniqueness of reconstruction results are put forward, i.e., the number of non-zero points of the diffraction pattern with a modulation plate is twice as much as that without the modulation plate, or the ratio of the spectrum cut-off width after enlarging λL (λ is the wavelength and L is the diffraction distance) times with the modulation plate to the spectrum cut-off width without the modulation plate is at least 0.414. It is verified by simulation. This study provides a theoretical basis for further optimization of CMI.

广告组1.1 - 空间光调制器+DMD
补充资料

中图分类号:O438

DOI:10.3788/AOS202040.1811001

所属栏目:成像系统

基金项目:国家自然科学基金、中国科学院科研仪器设备研制项目、上海市“科技创新行动计划”项目、中国科学院战略性先导科技专项;

收稿日期:2020-05-02

修改稿日期:2020-05-14

网络出版日期:2020-09-01

作者单位    点击查看

潘兴臣:中国科学院高功率激光物理重点实验室, 中国科学院上海光学精密机械研究所, 上海 201800中国科学院中国工程物理研究院高功率激光物理联合实验室, 上海 201800
刘诚:中国科学院高功率激光物理重点实验室, 中国科学院上海光学精密机械研究所, 上海 201800中国科学院中国工程物理研究院高功率激光物理联合实验室, 上海 201800
朱健强:中国科学院高功率激光物理重点实验室, 中国科学院上海光学精密机械研究所, 上海 201800中国科学院中国工程物理研究院高功率激光物理联合实验室, 上海 201800

联系人作者:刘诚(chengliu@siom.ac.cn)

备注:国家自然科学基金、中国科学院科研仪器设备研制项目、上海市“科技创新行动计划”项目、中国科学院战略性先导科技专项;

【1】Fienup J R. Phase retrieval algorithms: a comparison [J]. Applied Optics. 1982, 21(15): 2758-2769.

【2】Rodenburg J M. Faulkner H M L. A phase retrieval algorithm for shifting illumination [J]. Applied Physics Letters. 2004, 85(20): 4795-4797.

【3】Maiden A, Li P, Johnson D. Further improvements to the ptychographical iterative engine [J]. Optica. 2017, 4(7): 736-745.

【4】Truong N X, Safaei R, Cardin V, et al. Coherent tabletop EUV ptychography of nanopatterns [J]. Scientific Reports. 2018, 8(1): 16693.

【5】Pan X C, Liu C, Tao H, et al. Phase imaging based on ptychography and progress on related key techniques [J]. Acta Optica Sinica. 2020, 40(1): 0111010.
潘兴臣, 刘诚, 陶华, 等. Ptychography相位成像及其关键技术进展 [J]. 光学学报. 2020, 40(1): 0111010.

【6】Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements [J]. Nature. 2013, 494(7435): 68-71.

【7】Maiden A M, Morrison G R, Kaulich B, et al. Soft X-ray spectromicroscopy using ptychography with randomly phased illumination [J]. Nature Communications. 2013, 4(1): 1669.

【8】Humphry M J, Kraus B, Hurst A C, et al. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging [J]. Nature Communications. 2012, 3(1): 730.

【9】Gardner D F, Tanksalvala M, Shanblatt E R, et al. Subwavelength coherent imaging of periodic samples using a 13.5 nm tabletop high-harmonic light source [J]. Nature Photonics. 2017, 11(4): 259-263.

【10】Brady G R, Fienup J R. Measurement range of phase retrieval in optical surface and wavefront metrology [J]. Applied Optics. 2009, 48(3): 442-449.

【11】Wang H Y, Liu C, Veetil S P, et al. Measurement of the complex transmittance of large optical elements with Ptychographical Iterative Engine [J]. Optics Express. 2014, 22(2): 2159-2166.

【12】Hu C Y, Du Z M, Chen M H, et al. Single-shot ultrafast phase retrieval photography [J]. Optics Letters. 2019, 44(17): 4419-4422.

【13】Sidorenko P, Lahav O, Avnat Z, et al. Ptychographic reconstruction algorithm for frequency-resolved optical gating: super-resolution and supreme robustness [J]. Optica. 2016, 3(12): 1320-1330.

【14】Zhu J Q, Tao H, Pan X C, et al. Computational imaging streamlines high-power laser system characterization [J]. Laser Focus World. 2015, 51(12): 39-42.

【15】Chen B K, Sidorenko P, Lahav O, et al. Multiplexed single-shot ptychography [J]. Optics Letters. 2018, 43(21): 5379-5382.

【16】Pan X C, Liu C, Zhu J Q. Single shot ptychographical iterative engine based on multi-beam illumination [J]. Applied Physics Letters. 2013, 103(17): 171105.

【17】Sidorenko P, Cohen O. Single-shot ptychography [J]. Optica. 2016, 3(1): 9-14.

【18】Zhang F C, Chen B, Morrison G R, et al. Phase retrieval by coherent modulation imaging [J]. Nature Communications. 2016, 7(1): 13367.

【19】Zhang F C, Rodenburg J M. Phase retrieval based on wave-front relay and modulation [J]. Physical Review B. 2010, 82(12): 121104.

【20】Pan X C, Liu C, Zhu J Q. Phase retrieval with extended field of view based on continuous phase modulation [J]. Ultramicroscopy. 2019, 204: 10-17.

【21】Pan X C, Liu C, Zhu J Q. Coherent amplitude modulation imaging based on partially saturated diffraction pattern [J]. Optics Express. 2018, 26(17): 21929-21938.

引用该论文

Pan Xingchen,Liu Cheng,Zhu Jianqiang. Iterative Convergence and Reconstruction Uniqueness of Coherent Modulation Imaging[J]. Acta Optica Sinica, 2020, 40(18): 1811001

潘兴臣,刘诚,朱健强. 相干调制成像技术的迭代收敛性及重建唯一性[J]. 光学学报, 2020, 40(18): 1811001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF