首页 > 论文 > 中国激光 > 47卷 > 11期(pp:1106004--1)

异质结构的低串扰少模多芯光纤设计

Design of Low Crosstalk Few Mode Multi-Core Fiber Based on Heterogeneous Structure

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

设计了一种基于异质结构的低串扰3-LP模12芯光纤,纤芯采用异质无沟槽辅助的环形折射率分布,结构简单且能增大纤芯的有效模场面积。利用COMSOL软件分析了异质纤芯的芯间串扰、有效模场面积等性能,结果表明,异质纤芯LP01,LP11,LP21模的芯间串扰分别低于-0.78,-0.66,-0.4 dB/km,有效模场面积分别为150,166,200 μm 2。使用方点阵型纤芯排布方式,可实现包层直径约为213.8 μm、相对纤芯复用因子为26.9的低串扰3-LP模12芯光纤设计,为通信容量的升级扩容提供器件支持。

Abstract

In this paper, a low crosstalk 3-LP mode 12-core fiber based on heterogeneous structure is designed. The core adopts a heterogeneous ring refractive index distribution without trench-assisted structure, which is simple in structure and can increase the effective mode area of the core. COMSOL software is used to analyze the performance of crosstalk and effective mode area of heterogeneous cores. The results indicate that the inter-core crosstalk of the heterogeneous core LP01, LP11, and LP12 modes are lower than -0.78, -0.66, and -0.4 dB/km, respectively, and their effective mode areas are 150, 166, and 200 μm 2, respectively. With a square lattice core arrangement, a low crosstalk 3-LP mode 12-core fiber design with a cladding diameter of about 213.8 μm and a relative core multiplexing factor of 26.9 can be realized, providing device support for the upgrade and expansion of communication capacity.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN252

DOI:10.3788/CJL202047.1106004

所属栏目:光纤光学与光通信

基金项目:国家重点研发计划、国家自然科学基金;

收稿日期:2020-06-02

修改稿日期:2020-07-09

网络出版日期:2020-11-01

作者单位    点击查看

刘畅:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
裴丽:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
解宇恒:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
王建帅:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
郑晶晶:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
宁提纲:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
李晶:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044

联系人作者:裴丽(lipei@bjtu.edu.cn)

备注:国家重点研发计划、国家自然科学基金;

【1】Saitoh K, Matsuo S. Multicore fiber technology [J]. Journal of Lightwave Technology. 2016, 34(1): 55-66.

【2】Chi R H, Zhou Y P, Li L Y. Research status and development analysis of multicore fiber amplifier [J]. Laser & Optoelectronics Progress. 2019, 56(19): 190005.
迟荣华, 周燕萍, 李立亚. 多芯光纤放大器研究现状及发展分析 [J]. 激光与光电子学进展. 2019, 56(19): 190005.

【3】Takenaga K, Sasaki Y, Guan N, et al. Large effective-area few-mode multicore fiber [J]. IEEE Photonics Technology Letters. 2012, 24(21): 1941-1944.

【4】Yuan L B. Multi-core fiber characteristics and its sensing applications [J]. Laser & Optoelectronics Progress. 2019, 56(17): 170612.
苑立波. 多芯光纤特性及其传感应用 [J]. 激光与光电子学进展. 2019, 56(17): 170612.

【5】Takenaga K, Arakawa Y, Sasaki Y, et al. A large effective area multi-core fiber with an optimized cladding thickness [J]. Optics Express. 2011, 19(26): B543-B550.

【6】Ye F H, Tu J J, Saitoh K, et al. Design of homogeneous trench-assisted multi-core fibers based on analytical model [J]. Journal of Lightwave Technology. 2016, 34(18): 4406-4416.

【7】Zheng S W, Ren G B, Lin Z, et al. Influence of trench parameters on the characteristic of trench-assisted multi-core fiber [J]. Acta Optica Sinica. 2013, 33(10): 1006001.
郑斯文, 任国斌, 林桢, 等. 下陷层参数对掺氟下陷层多芯光纤特性的影响分析 [J]. 光学学报. 2013, 33(10): 1006001.

【8】Mori T, Sakamoto T, Wada M, et al. Few-mode fibers supporting more than two LP modes for mode-division-multiplexed transmission with MIMO DSP [J]. Journal of Lightwave Technology. 2014, 32(14): 2468-2479.

【9】Lin Zhen, Zheng S W, Ren G B, et al. Characterization and comparison of 7-core and 19-core large-mode-area few-mode fibers [J]. Acta Physica Sinica. 2013, 62(6): 256-263.
林桢, 郑斯文, 任国斌, 等. 七芯及十九芯大模场少模光纤的特性研究和比对分析 [J]. 物理学报. 2013, 62(6): 256-263.
Lin Zhen, Zheng S W, Ren G B, et al. Characterization and comparison of 7-core and 19-core large-mode-area few-mode fibers [J]. Acta Physica Sinica. 2013, 62(6): 256-263.
林桢, 郑斯文, 任国斌, 等. 七芯及十九芯大模场少模光纤的特性研究和比对分析 [J]. 物理学报. 2013, 62(6): 256-263.

【10】Mukasa K, Imamura K, Sugizaki R. Multi-core few-mode optical fibers with large aeff . [C]∥European Conference and Exhibition on Optical Communication 2012, September 16-20, 2012, Amsterdam, Netherlands. Washington, D.C.: OSA. 2012, 1-3.

【11】Sakamoto T, Matsui T, Saitoh K, et al. Low-loss and low-DMD 6-mode 19-core fiber with cladding diameter of less than 250 μm [J]. Journal of Lightwave Technology. 2017, 35(3): 443-449.

【12】Sakamoto T, Saitoh K, Saitoh S, et al. Six-mode seven-core fiber for repeated dense space-division multiplexing transmission [J]. Journal of Lightwave Technology. 2018, 36(5): 1226-1232.

【13】Xia C, Amezcua-Correa R, Bai N, et al. Hole-assisted few-mode multicore fiber for high-density space-division multiplexing [J]. IEEE Photonics Technology Letters. 2012, 24(21): 1914-1917.

【14】Jin W X, Ren G B, Pei L, et al. Dual-mode large-mode-area multi-core fiber with circularly arranged airhole cores [J]. Acta Physica Sinica. 2017, 66(2): 024210.
靳文星, 任国斌, 裴丽, 等. 环绕空气孔结构的双模大模场面积多芯光纤的特性分析 [J]. 物理学报. 2017, 66(2): 024210.

【15】Tu J J, Saitoh K, Amma Y, et al. Heterogeneous trench-assisted few-mode multi-core fiber with graded-index profile and square-lattice layout for low differential mode delay [J]. Optics Express. 2015, 23(14): 17783-17792.

【16】Tu J J, Saitoh K, Koshiba M, et al. Optimized design method for bend-insensitive heterogeneous trench-assisted multi-core fiber with ultra-low crosstalk and high core density [J]. Journal of Lightwave Technology. 2013, 31(15): 2590-2598.

【17】Hayashi T, Taru T, Shimakawa O, et al. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber [J]. Optics Express. 2011, 19(17): 16576-16592.

【18】Koshiba M, Saitoh K, Takenaga K, et al. Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory [J]. Optics Express. 2011, 19(26): B102-B111.

【19】Wang G L, Ning T G, Zheng J J, et al. Novel bend-resistant large-mode-area fan-segmented cladding fiber with double trenches [J]. Acta Optica Sinica. 2019, 39(10): 1006008.
王冠利, 宁提纲, 郑晶晶, 等. 新型双沟槽抗弯曲大模场扇形瓣状光纤研究 [J]. 光学学报. 2019, 39(10): 1006008.

【20】Liu S N, Ning T G, Ma S S, et al. Trench-assisted fan-segmented cladding fiber with large mode area [J]. Chinese Journal of Lasers. 2018, 45(12): 1206001.
刘诗男, 宁提纲, 马绍朔, 等. 一种大模场沟槽辅助型扇形瓣状光纤的研究 [J]. 中国激光. 2018, 45(12): 1206001.

【21】Kasahara M, Saitoh K, Sakamoto T, et al. Design of three-spatial-mode ring-core fiber [J]. Journal of Lightwave Technology. 2014, 32(7): 1337-1343.

【22】Li J P, Liu J, Gao S C, et al. Manipulation and transmission technologies of optical field for multidimensional multiplexing optical fiber communication [J]. Acta Optica Sinica. 2019, 39(1): 0126008.
李建平, 刘洁, 高社成, 等. 面向光纤通信多维复用的光场调控与传输技术 [J]. 光学学报. 2019, 39(1): 0126008.

【23】Tu J J, Saitoh K, Takenaga K, et al. Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay [J]. Optics Express. 2014, 22(4): 4329-4341.

【24】Sakamoto T, Mori T, Yamamoto T, et al. Mode-division multiplexing transmission system with DMD-independent low complexity MIMO processing [J]. Journal of Lightwave Technology. 2013, 31(13): 2192-2199.

【25】Sasaki Y, Takenaga K, Matsuo S, et al. Few-mode multicore fibers for long-haul transmission line [J]. Optical Fiber Technology. 2017, 35: 19-27.

【26】Sasaki Y, Takenaga K, Aikawa K, et al. Single-mode 37-core fiber with a cladding diameter of 248 μm . [C]∥2017 Optical Fiber Communications Conference and Exhibition (OFC), March 19-23, 2017, Los Angeles, CA, USA. New York: IEEE. 2017, 1-3.

【27】Matsuo S, Takenaga K, Arakawa Y, et al. Large-effective-area ten-core fiber with cladding diameter of about 200 μm [J]. Optics Letters. 2011, 36(23): 4626-4628.

引用该论文

Liu Chang,Pei Li,Xie Yuheng,Wang Jianshuai,Zheng Jingjing,Ning Tigang,Li Jing. Design of Low Crosstalk Few Mode Multi-Core Fiber Based on Heterogeneous Structure[J]. Chinese Journal of Lasers, 2020, 47(11): 1106004

刘畅,裴丽,解宇恒,王建帅,郑晶晶,宁提纲,李晶. 异质结构的低串扰少模多芯光纤设计[J]. 中国激光, 2020, 47(11): 1106004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF