首页 > 论文 > Chinese Optics Letters > 19卷 > 1期(p:013601)

Chiral plasmonic nanostructure of twistedly stacked nanogaps

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Nanogap plasmonic structures with strong coupling between separated components have different responses to orthogonal-polarized light, giving rise to giant optical chirality. Here, we proposed a three-dimensional (3D) nanostructure that consists of two vertically and twistedly aligned nanogaps, showing the hybridized charge distribution within 3D structures. It is discovered that the structure twisted by 60° exhibits plasmonic coupling behavior with/without gap modes for different circular-polarized plane waves, showing giant chiral response of 60% at the wavelength of 1550 nm. By controlling the disk radius and the insulator layer, the circular dichroism signal can be further tuned between 1538 and 1626 nm.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.3788/COL202119.013601

所属栏目:Nanophotonics, Metamaterials, and Plasmonics

基金项目:This work was supported by the National Natural Science Foundation of China (Nos. U1704253 and 51471045), the Zhejiang Provincial Foundation for Distinguished Young Scholars (No. LR18E010001), the Zhejiang Provincial Key Research and Development Program (No. 2019C01121), and the start-up funding supported from the Hangzhou Dianzi University.

收稿日期:2020-07-13

录用日期:2020-09-04

网络出版日期:2020-11-30

作者单位    点击查看

张鉴:Institute of Advanced Magnetic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
屠蕊:Institute of Advanced Magnetic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
黄超:Institute of Advanced Magnetic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
姚小莉:Institute of Advanced Magnetic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
胡鑫:Institute of Advanced Magnetic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
葛海雄:Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
张雪峰:Institute of Advanced Magnetic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

联系人作者:张鉴(jianzhang@hdu.edu.cn); 张雪峰(zhang@hdu.edu.cn);

备注:This work was supported by the National Natural Science Foundation of China (Nos. U1704253 and 51471045), the Zhejiang Provincial Foundation for Distinguished Young Scholars (No. LR18E010001), the Zhejiang Provincial Key Research and Development Program (No. 2019C01121), and the start-up funding supported from the Hangzhou Dianzi University.

【1】W. L. Barnes, A. Dereux and T. W. Ebbesen. Surface plasmon subwavelength optics. Nature. 424, (2003).

【2】J. Zhao, X. Zhang, C. R. Yonzon, J. H. Amanda and P. V. D. Richard. Localized surface plasmon resonance biosensors. Nanomedicine. 1, (2006).

【3】K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun and X. Zhang. Raman enhancement factor of a single tunable nanoplasmonic resonator. J. Phys. Chem. B. 110, (2006).

【4】X. Huang, C. Lou, H. Zhang and H. Yang. Effects of different structural parameters and the medium environment on plasmonic lattice resonance formed by Ag nanospheres on SiO2 nanopillar arrays. Chin. Opt. Lett. 18, (2020).

【5】Y. Zhao, M.A. Belkin and A. Alù. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 3, (2012).

【6】R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller and F. Capasso. Arbitrary spin-to–orbital angular momentum conversion of light. Science. 358, (2017).

【7】Y. Guo, M. Pu, Z. Zhao, Y. Wang, J. J. Jin, P. Gao, X. Li, X. Ma and X. Luo. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photon. 3, (2016).

【8】F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu and X. Luo. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions. Adv. Funct. Mater. 27, (2017).

【9】H. Wang, J. Zheng, Y. Fu, C. Wang, X. Huang, Z. Ye and L. Qian. Multichannel high extinction ratio polarized beam splitters based on metasurfaces. Chin. Opt. Lett. 17, (2019).

【10】C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander and N. J. Halas. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 5, (2005).

【11】T. Fu, T. Wang, Y. Chen, Y. Wang, Y. Qu and Z. Zhang. Chiral near-fields around chiral dolmen nanostructure. J. Phys. D: Appl. Phys. 50, (2017).

【12】A. V. Novitsky, V. M. Galynsky and S. V. Zhukovsky. Asymmetric transmission in planar chiral split-ring metamaterials: microscopic Lorentz-theory approach. Phys. Rev. B. 86, (2012).

【13】C. Kelly, L. K. Khorashad, N. Gadegaard, L. D. Barron, A. O. Govorov, A. S. Karimullah and M. Kadodwala. Controlling metamaterial transparency with superchiral fields. ACS Photon. 5, (2018).

【14】S. C. Yang, H. Kobori, C. L. He, M. H. Lin, H. Y. Chen, C. Li, M. Kanehara, T. Teranishi and S. Gwo. Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes. Nano Lett. 10, (2010).

【15】J. Xiao, R. Xiao, R. Zhang, Z. Shen, W. Hu, L. Wang and Y. Lu. Tunable terahertz absorber based on transparent and flexible metamaterial. Chin. Opt. Lett. 18, (2020).

【16】M. Hentschel, M. Sch?ferling, X. Duan, H. Giessen and N. Liu. Controlling metamaterial transparency with superchiral fields. Sci. Adv. 3, (2017).

【17】X. Cui, F. Qin, Q. Ruan, X. Zhuo and J. Wang. Circular gold nanodisks with synthetically tunable diameters and thicknesses. Adv. Funct. Mater. 28, (2018).

【18】N. J. Halas, S. Lal, W. S. Chang, S. Link and P. Nordlander. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, (2011).

【19】M. Hentschel, M. Sch?ferling, T. Weiss, N. Liu and H. Giessen. Three-dimensional chiral plasmonic oligomers. Nano Lett. 12, (2012).

【20】X. Yao, Z. Shi, C. Li, Z. Kong, G. Zhang, J. Zhang and X. Zhang. Tunable optical absorption of dimer nanostructure array achieved by angular evaporation. J. Micromech. Microeng. 28, (2018).

【21】P. B. Johnson and R. W. Christy. Optical constants of the noble metals. Phys. Rev. B. 6, (1972).

【22】Z. Li, W. Liu, H. Cheng, S. Chen and J. Tian. Spin-selective transmission and devisable chirality in two-layer metasurfaces. Sci. Rep. 7, (2017).

【23】Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng and S. H. Chang. Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography. ACS Nano. 6, (2012).

【24】K. Y. Bliokh and F. Nori. Characterizing optical chirality. Phys. Rev. A. 83, (2011).

【25】M. Sch?ferling, X. Yin, N. Engheta and H. Giessen. Helical plasmonic nanostructures as prototypical chiral near-field sources. ACS Photon. 1, (2014).

【26】A. García-Etxarri and J. A. Dionne. Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas. Phys. Rev. B. 87, (2013).

【27】L. Hu, X. Tian, Y. Huang, L. Fang and Y. Fang. Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles. Nanoscale. 8, (2016).

【28】S. Yoo and Q. H. Park. Metamaterials and chiral sensing: a review of fundamentals and applications. Nanophotonics. 8, (2019).

引用该论文

Jian Zhang, Rui Tu, Chao Huang, Xiaoli Yao, Xin Hu, Haixiong Ge, Xuefeng Zhang, "Chiral plasmonic nanostructure of twistedly stacked nanogaps," Chinese Optics Letters 19(1), 013601 (2021)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF