首页 > 论文 > Photonics Research > 9卷 > 1期(pp:13-20)

Metasurface-based subtractive color filter fabricated on a 12-inch glass wafer using a CMOS platform [Cover Paper]

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Optical color filters are widely applied in many areas including display, imaging, sensing, holography, energy harvest, and measurement. Traditional dye-based color filters have drawbacks such as environmental hazards and instability under high temperature and ultraviolet radiation. With advances in nanotechnology, structural color filters, which are based on the interaction of light with designed nanostructures, are able to overcome the drawbacks. Also, it is possible to fabricate structural color filters using standard complementary metal-oxide-semiconductor (CMOS) fabrication facilities with low cost and high volume. In this work, metasurface-based subtractive color filters (SCFs) are demonstrated on 12-inch (300-mm) glass wafers using a CMOS-compatible fabrication process. In order to make the transmissive-type SCF on a transparent glass wafer, an in-house developed layer transfer process is used to solve the glass wafer handling issue in fabrication tools. Three different heights of embedded silicon nanopillars (110, 170, and 230 nm) are found to support magnetic dipole resonances. With pillar height and pitch variation, SCFs with different displayed colors are achieved. Based on the resonance wavelength, the displayed color of the metasurface is verified within the red-yellow-blue color wheel. The simulation and measurement results are compared and discussed. The work provides an alternative design for high efficiency color filters on a CMOS-compatible platform, and paves the way towards mass-producible large-area metasurfaces.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.404124

所属栏目:Integrated Optics

基金项目:Agency for Science, Technology and Research10.13039/501100001348;

收稿日期:2020-07-31

录用日期:2020-09-27

网络出版日期:2020-09-28

作者单位    点击查看

Zhengji Xu:Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore;Current Address: School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai 519082, China
Nanxi Li:Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
Yuan Dong:Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
Yuan Hsing Fu:Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
Ting Hu:Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
Qize Zhong:Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
Yanyan Zhou:Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
Dongdong Li:Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
Shiyang Zhu:Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
Navab Singh:Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore

联系人作者:Nanxi Li(linx1@ime.a-star.edu.sg)

备注:Agency for Science, Technology and Research10.13039/501100001348;

【1】S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu and J. K. W. Yang. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4023-4029(2014).

【2】Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov and J. K. W. Yang. Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space. Nano Lett. 17, 7620-7628(2017).

【3】J. Xiang, J. Li, Z. Zhou, S. Jiang, J. Chen, Q. Dai, S. Tie, S. Lan and X. Wang. Manipulating the orientations of the electric and magnetic dipoles induced in silicon nanoparticles for multicolor display. Laser Photon. Rev. 12, (2018).

【4】S. Yokogawa, S. P. Burgos and H. A. Atwater. Plasmonic color filters for CMOS image sensor applications. Nano Lett. 12, 4349-4354(2012).

【5】N. Liu, M. L. Tang, M. Hentschel, H. Giessen and A. P. Alivisatos. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10, 631-636(2011).

【6】A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas and N. A. Mortensen. Plasmonic colour generation. Nat. Rev. Mater. 2, (2016).

【7】M. Ozaki, J. Kato and S. Kawata. Surface-plasmon holography with white-light illumination. Science. 332, 218-220(2011).

【8】H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter and L. J. Guo. Photonic color filters integrated with organic solar cells for energy harvesting. ACS Nano. 5, 7055-7060(2011).

【9】M. J. Vrhel, R. Gershon and L. S. Iwan. Measurement and analysis of object reflectance spectra. Color Res. Appl. 19, 4-9(1994).

【10】T. Lee, J. Jang, H. Jeong and J. Rho. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. Nano Converg. 5, (2018).

【11】V. R. Shrestha, S.-S. Lee, E.-S. Kim and D.-Y. Choi. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array. Nano Lett. 14, 6672-6678(2014).

【12】T. Xu, Y.-K. Wu, X. Luo and L. J. Guo. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 1, (2010).

【13】J. Berzin?, S. Fasold, T. Pertsch, S. M. B. B?umer and F. Setzpfandt. Submicrometer nanostructure-based RGB filters for CMOS image sensors. ACS Photon. 6, 1018-1025(2019).

【14】C.-S. Park, V. R. Shrestha, W. Yue, S. Gao, S.-S. Lee, E.-S. Kim and D.-Y. Choi. Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks. Sci. Rep. 7, (2017).

【15】W. Sabra, S. I. Azzam, M. Song, M. Povolotskyi, A. H. Aly and A. V. Kildishev. Plasmonic metasurfaces for subtractive color filtering: optimized nonlinear regression models. Opt. Lett. 43, 4815-4818(2018).

【16】V. R. Shrestha, S.-S. Lee, E.-S. Kim and D.-Y. Choi. Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array. Sci. Rep. 5, (2015).

【17】Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo and C.-W. Qiu. Color generation via subwavelength plasmonic nanostructures. Nanoscale. 7, 6409-6419(2015).

【18】Y. Gao, C. Huang, C. Hao, S. Sun, L. Zhang, C. Zhang, Z. Duan, K. Wang, Z. Jin, N. Zhang, A. V. Kildishev, C.-W. Qiu, Q. Song and S. Xiao. Lead halide perovskite nanostructures for dynamic color display. ACS Nano. 12, 8847-8854(2018).

【19】Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C.-W. Qiu, J. K. W. Yang and H. Duan. Stepwise-nanocavity-assisted transmissive color filter array microprints. Research. 2018, (2018).

【20】J. Proust, F. Bedu, B. Gallas, I. Ozerov and N. Bonod. All-dielectric colored metasurfaces with silicon Mie resonators. ACS Nano. 10, 7761-7767(2016).

【21】J. Zhou, A. Panday, Y. Xu, X. Chen, L. Chen, C. Ji and L. J. Guo. Visualizing Mie resonances in low-index dielectric nanoparticles. Phys. Rev. Lett. 120, (2018).

【22】C. Zhang, Y. Xu, J. Liu, J. Li, J. Xiang, H. Li, J. Li, Q. Dai, S. Lan and A. E. Miroshnichenko. Lighting up silicon nanoparticles with Mie resonances. Nat. Commun. 9, (2018).

【23】E. S. Magden, N. Li, M. Raval, C. V. Poulton, A. Ruocco, N. Singh, D. Vermeulen, E. P. Ippen, L. A. Kolodziejski and M. R. Watts. Transmissive silicon photonic dichroic filters with spectrally selective waveguides. Nat. Commun. 9, (2018).

【24】, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley and M. R. Watts. Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform. Opt. Lett. 42, 1772-1775(2017).

【25】N. Li, Z. Su, , E. S. Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake and M. R. Watts. Athermal synchronization of laser source with WDM filter in a silicon photonics platform. Appl. Phys. Lett. 110, (2017).

【26】H. Yuan, J. Tao, N. Li, A. Karmakar, C. Tang, H. Cai, S. J. Pennycook, N. Singh and D. Zhao. On-chip tailorability of capacitive gas sensors integrated with metal–organic framework films. Angew. Chem. (Int. Ed.). 58, 14089-14094(2019).

【27】N. Li, H. Yuan, L. Xu, J. Tao, D. K. T. Ng, L. Y. T. Lee, D. D. Cheam, Y. Zeng, B. Qiang, Q. Wang, H. Cai, N. Singh and D. Zhao. Radiation enhancement by graphene oxide on microelectromechanical system emitters for highly selective gas sensing. ACS Sens. 4, 2746-2753(2019).

【28】H. Yuan, N. Li, J. Linghu, J. Dong, Y. Wang, A. Karmakar, J. Yuan, M. Li, P. J. S. Buenconsejo, G. Liu, H. Cai, S. J. Pennycook, N. Singh and D. Zhao. Chip-level integration of covalent organic frameworks for trace benzene sensing. ACS Sens. 5, 1474-1481(2020).

【29】M. Xin, N. Li, N. Singh, A. Ruocco, Z. Su, E. S. Magden, J. Notaros, D. Vermeulen, E. P. Ippen, M. R. Watts and F. X. K?rtner. Optical frequency synthesizer with an integrated erbium tunable laser. Light Sci. Appl. 8, (2019).

【30】N. Singh, M. Xin, N. Li, D. Vermeulen, A. Ruocco, E. S. Magden, K. Shtyrkova, E. Ippen, F. X. K?rtner and M. R. Watts. Silicon photonics optical frequency synthesizer. Laser Photon. Rev. 14, (2020).

【31】J. Notaros, N. Li, C. V. Poulton, Z. Su, M. J. Byrd, E. S. Magden, E. Timurdogan, C. Baiocco, N. M. Fahrenkopf and M. R. Watts. CMOS-compatible optical phased array powered by a monolithically-integrated erbium laser. J. Lightwave Technol. 37, 5982-5987(2019).

【32】C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen and M. R. Watts. Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths. Opt. Lett. 42, 21-24(2017).

【33】J. Notaros, M. Notaros, M. Raval, C. V. Poulton, M. J. Byrd, N. Li, Z. Su, E. S. Magden, E. Timurdogan, T. Dyer, C. Baiocco, T. Kim, P. Bhargava, V. Stojanovic and M. R. Watts. Integrated optical phased arrays: LiDAR, augmented reality, and beyond. OSA Advanced Photonics Congress (AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED). : Optical Society of America, (2019).

【34】J.-S. Park, S. Zhang, A. She, W. T. Chen, P. Lin, K. M. A. Yousef, J.-X. Cheng and F. Capasso. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett. 19, 8673-8682(2019).

【35】Y. Dong, Z. Xu, N. Li, J. Tong, Y. H. Fu, Y. Zhou, T. Hu, Q. Zhong, V. Bliznetsov and S. Zhu. Si metasurface half-wave plates demonstrated on a 12-inch CMOS platform. Nanophotonics. 9, 149-157(2019).

【36】Z. Xu, Y. Dong, C.-K. Tseng, T. Hu, J. Tong, Q. Zhong, N. Li, L. Sim, K. H. Lai, Y. Lin, D. Li, Y. Li, V. Bliznetsov, Y.-H. Fu, S. Zhu, Q. Lin, D. H. Zhang, Y. Gu, N. Singh and D.-L. Kwong. CMOS-compatible all-Si metasurface polarizing bandpass filters on 12-inch wafers. Opt. Express. 27, 26060-26069(2019).

【37】A. She, S. Zhang, S. Shian, D. R. Clarke and F. Capasso. Large area metalenses: design, characterization, and mass manufacturing. Opt. Express. 26, 1573-1585(2018).

【38】T. Hu, Q. Zhong, N. Li, Y. Dong, Z. Xu, Y. H. Fu, D. Li, V. Bliznetsov, Y. Zhou, K. H. Lai, Q. Lin, S. Zhu and N. Singh. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics. 9, 823-830(2020).

【39】S. Zhang, M.-H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, M. Khorasaninejad, D. Rousso, X. Wang, M. Troccoli, N. Yu and F. Capasso. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays. Opt. Express. 24, 18024-18034(2016).

【40】T. Hu, Q. Zhong, N. Li, Y. Dong, Z. Xu, D. Li, Y. H. Fu, Y. Zhou, K. H. Lai, V. Bliznetsov, H.-J. Lee, W. L. Loh, S. Zhu, Q. Lin and N. Singh. A metalens array on a 12-inch glass wafer for optical dot projection. Optical Fiber Communication Conference (OFC). : Optical Society of America, (2020).

【41】Q. Zhong, Y. Dong, D. Li, N. Li, T. Hu, Z. Xu, Y. Zhou, K. H. Lai, Y. H. Fu, V. Bliznetsov, H.-J. Lee, W. L. Loh, S. Zhu, Q. Lin and N. Singh. Large-area metalens directly patterned on a 12-inch glass wafer using immersion lithography for mass production. Optical Fiber Communication Conference (OFC). : Optical Society of America, (2020).

【42】N. Li, H. Y. Fu, Y. Dong, T. Hu, Z. Xu, Q. Zhong, D. Li, K. H. Lai, S. Zhu, Q. Lin, Y. Gu and N. Singh. Large-area pixelated metasurface beam deflector on a 12-inch glass wafer for random point generation. Nanophotonics. 8, 1855-1861(2019).

【43】T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff. Extraordinary optical transmission through sub-wavelength hole arrays. Nature. 391, 667-669(1998).

【44】F. Cheng, J. Gao, L. Stan, D. Rosenmann, D. Czaplewski and X. Yang. Aluminum plasmonic metamaterials for structural color printing. Opt. Express. 23, 14552-14560(2015).

【45】M. Miyata, H. Hatada and J. Takahara. Full-color subwavelength printing with gap-plasmonic optical antennas. Nano Lett. 16, 3166-3172(2016).

【46】T. Hu, C.-K. Tseng, Y. H. Fu, Z. Xu, Y. Dong, S. Wang, K. H. Lai, V. Bliznetsov, S. Zhu, Q. Lin and Y. Gu. Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. Opt. Express. 26, 19548-19554(2018).

【47】B. Zeng, Y. Gao and F. J. Bartoli. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters. Sci. Rep. 3, (2013).

【48】W. Yue, S. Gao, S.-S. Lee, E.-S. Kim and D.-Y. Choi. Subtractive color filters based on a silicon-aluminum hybrid-nanodisk metasurface enabling enhanced color purity. Sci. Rep. 6, (2016).

【49】I. Koirala, S.-S. Lee and D.-Y. Choi. Highly transmissive subtractive color filters based on an all-dielectric metasurface incorporating TiO2 nanopillars. Opt. Express. 26, 18320-18330(2018).

【50】W. Yue, S. Gao, S.-S. Lee, E.-S. Kim and D.-Y. Choi. Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors. Laser Photon. Rev. 11, (2017).

【51】D. D. Ordinario, H. Jinno, M. O. G. Nayeem, Y. Tachibana, T. Yokota and T. Someya. Stretchable structural color filters based on a metal-insulator–metal structure. Adv. Opt. Mater. 6, (2018).

【52】Y.-T. Yoon, C.-H. Park and S.-S. Lee. Highly efficient color filter incorporating a thin metal-dielectric resonant structure. Appl. Phys. Express. 5, (2012).

【53】A. F. Kaplan, T. Xu and L. J. Guo. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography. Appl. Phys. Lett. 99, (2011).

【54】K.-T. Lee, S. Seo and L. J. Guo. High-color-purity subtractive color filters with a wide viewing angle based on plasmonic perfect absorbers. Adv. Opt. Mater. 3, 347-352(2015).

【55】N. Li, Z. Xu, Y. Dong, T. Hu, Q. Zhong, Y. H. Fu, S. Zhu and N. Singh. Large-area metasurface on CMOS-compatible fabrication platform: driving flat optics from lab to fab. Nanophotonics. 9, 3071-3087(2020).

引用该论文

Zhengji Xu, Nanxi Li, Yuan Dong, Yuan Hsing Fu, Ting Hu, Qize Zhong, Yanyan Zhou, Dongdong Li, Shiyang Zhu, and Navab Singh, "Metasurface-based subtractive color filter fabricated on a 12-inch glass wafer using a CMOS platform," Photonics Research 9(1), 13-20 (2021)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF