首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1026001--1)

可调谐的非傍轴自加速光束

Tunable Non-Paraxial Accelerating Beams

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

近年来,自加速光束的出现使激光光束在自由空间中沿弯曲轨迹传播成为可能[1],这类新型特殊光束无须依靠外场即能实现自加速,而且还具有无衍射特性。因此,在光学微粒的操作[2-7]、微粒运输和引导[4]、自弯曲等离子通道的产生[8-9]、光子弹[10]、激光成丝[11]、自聚焦光束的产生[12-13]以及超分辨成像[14-15]等领域具有重要的应用。

Abstract

Herein, a method for generating tunable nonparaxial accelerating beams is proposed theoretically by spectral phase modulation and verified experimentally. The mathematical model of the relationship between spectral phase and beam propagation trajectory is established based on the stationary phase approximation and the principle of optical caustics. Theoretical simulations and experimental results show that the proposed method overcomes the limitations of conventional paraxial approximation, and nonparaxial accelerating beams are generated. Such accelerating beams with flexible and tunable trajectories have potential applications in the areas of optical particle manipulation, particle transport and guidance, and super-resolution imaging.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1026001

所属栏目:物理光学

基金项目:浙江省自然科学基金、国家自然科学基金、 浙江省光场调控技术重点实验室开放基金;

收稿日期:2019-04-10

修改稿日期:2019-06-21

网络出版日期:2019-10-01

作者单位    点击查看

兰燕平:浙江师范大学物理与电子信息工程学院, 浙江 金华 321004
赖松陶:浙江师范大学物理与电子信息工程学院, 浙江 金华 321004
施逸乐:浙江师范大学物理与电子信息工程学院, 浙江 金华 321004
任志君:浙江师范大学物理与电子信息工程学院, 浙江 金华 321004
钱义先:浙江师范大学物理与电子信息工程学院, 浙江 金华 321004浙江省光场调控技术重点实验室, 浙江 杭州 310018

联系人作者:钱义先(qianyixian@zjnu.edu.cn)

备注:浙江省自然科学基金、国家自然科学基金、 浙江省光场调控技术重点实验室开放基金;

【1】Chen Z G, Xu J J, Hu Y et al. Control and novel applications of self-accelerating beams. Acta Optica Sinica. 36(10), (2016).
陈志刚, 许京军, 胡毅 等. 自加速光的调控及其新奇应用. 光学学报. 36(10), (2016).

【2】Baumgartl J, Mazilu M and Dholakia K. Optically mediated particle clearing using Airy wavepackets. Nature Photonics. 2(11), 675-678(2008).

【3】Cao R, Yang Y, Wang J G et al. Microfabricated continuous cubic phase plate induced Airy beams for optical manipulation with high power efficiency. Applied Physics Letters. 99(26), (2011).

【4】Zhang P, Prakash J, Zhang Z et al. Trapping and guiding microparticles with morphing autofocusing Airy beams. Optics Letters. 36(15), 2883-2885(2011).

【5】Zheng Z, Zhang B F, Chen H et al. Optical trapping with focused Airy beams. Applied Optics. 50(1), 43-49(2011).

【6】Schley R, Kaminer I, Greenfield E et al. Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories. Nature Communications. 5, (2014).

【7】Zhao J Y, Chremmos I D, Song D H et al. Curved singular beams for three-dimensional particle manipulation. Scientific Reports. 5, (2015).

【8】Li L, Li T, Wang S M et al. Plasmonic Airy beam generated by in-plane diffraction. Physical Review Letters. 107(12), (2011).

【9】Polynkin P, Kolesik M, Moloney J V et al. Curved plasma channel generation using ultraintense Airy beams. Science. 324(5924), 229-232(2009).

【10】Chong A, Renninger W H, Christodoulides D N et al. Airy-Bessel wave packets as versatile linear light bullets. Nature Photonics. 4(2), 103-106(2010).

【11】Polynkin P, Kolesik M and Moloney J. Filamentation of femtosecond laser Airy beams in water. Physical Review Letters. 103(12), (2009).

【12】Lai S T, Lan Y P, Mao H X et al. Self-focusing characteristics of circular array Airy vortex beams. Chinese Journal of Lasers. 46(4), (2019).
赖松陶, 兰燕平, 毛红行 等. 环形阵列艾里涡旋光束的自聚焦特性. 中国激光. 46(4), (2019).

【13】Chremmos I D, Chen Z G, Christodoulides D N et al. Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics. Physical Review A. 85(2), (2012).

【14】Jia S, Vaughan J C and Zhuang X W. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function. Nature Photonics. 8(4), 302-306(2014).

【15】Vettenburg T. Dalgarno H I C, Nylk J, et al. Light-sheet microscopy using an Airy beam. Nature Methods. 11(5), 541-544(2014).

【16】Berry M V and Balazs N L. Nonspreading wave packets. American Journal of Physics. 47(3), 264-267(1979).

【17】Siviloglou G A, Broky J, Dogariu A et al. Observation of accelerating Airy beams. Physical Review Letters. 99(21), (2007).

【18】Qian Y X and Zhang S T. Manipulation of accelerating beam in gradient potentials. Optics Communications. 435, 409-412(2019).

【19】Ye Z Y, Liu S, Lou C B et al. Acceleration control of Airy beams with optically induced refractive-index gradient. Optics Letters. 36(16), 3230-3232(2011).

【20】Efremidis N K. Airy trajectory engineering in dynamic linear index potentials. Optics Letters. 36(15), 3006-3008(2011).

【21】Zhang P, Hu Y, Li T C et al. Nonparaxial Mathieu and Weber accelerating beams. Physical Review Letters. 109(19), (2012).

【22】Kaminer I, Bekenstein R, Nemirovsky J et al. Nondiffracting accelerating wave packets of Maxwell’s equations. Physical Review Letters. 108(16), (2012).

【23】Berry M V and Upstill C. IV catastrophe optics: morphologies of caustics and their diffraction patterns. 18, 257-346(1980).

【24】Saunders P T. An introduction to catastrophe theory. (1980).

【25】Greenfield E, Segev M, Walasik W et al. Accelerating light beams along arbitrary convex trajectories. Physical Review Letters. 106(21), (2011).

【26】Penciu R S, Paltoglou V and Efremidis N K. Closed-form expressions for nonparaxial accelerating beams with pre-engineered trajectories. Optics Letters. 40(7), 1444-1447(2015).

【27】Li S Z, Shen X J and Wang L. Generation and control of self-accelerating Airy beams. Chinese Journal of Lasers. 45(5), (2018).
李绍祖, 沈学举, 王龙. 自加速艾里光束的生成及控制. 中国激光. 45(5), (2018).

【28】Hu Y, Bongiovanni D, Chen Z G et al. Multipath multicomponent self-accelerating beams through spectrum-engineered position mapping. Physical Review A. 88(4), (2013).

【29】Stamnes J J. Waves in focal regions. propagation, diffraction and focusing of light, sound and water waves. New York: Taylor & Francis Group. (1986).

【30】Wong B R. Asymptotic approximations of integrals. (1989).

【31】Kravtsov Y A and Orlov Y I. Caustics, catastrophes, and wave fields. 2nd ed. Berlin, Heidelberg: Springer. (1999).

【32】et al. Caustics, catastrophes, and symmetries in curved beams. Physical Review A. 92(3), (2015).
Vaveliuk P, Lencina A, Rodrigo J A, Vaveliuk P, Lencina A, Rodrigo J A et al. Symmetric Airy beams. Optics Letters. 39(8), 2370-2373(2014).

【33】Gutiérrez C E. Reflection, refraction, and the Legendre transform. Journal of the Optical Society of America A. 28(2), 284-289(2011).

引用该论文

Yanping Lan,Songtao Lai,Yile Shi,Zhijun Ren,Yixian Qian. Tunable Non-Paraxial Accelerating Beams[J]. Acta Optica Sinica, 2019, 39(10): 1026001

兰燕平,赖松陶,施逸乐,任志君,钱义先. 可调谐的非傍轴自加速光束[J]. 光学学报, 2019, 39(10): 1026001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF