首页 > 论文 > Photonics Research > 8卷 > 9期(pp:1475-1483)

Broadband quasi-phase-matching in dispersion-engineered all-optically poled silicon nitride waveguides

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Quasi-phase-matching (QPM) has become one of the most common approaches for increasing the efficiency of nonlinear three-wave mixing processes in integrated photonic circuits. Here, we provide a study of dispersion engineering of QPM second-harmonic (SH) generation in stoichiometric silicon nitride (Si3N4) waveguides. We apply waveguide design and lithographic control in combination with the all-optical poling technique to study the QPM properties and shape the waveguide dispersion for broadband spectral conversion efficiency inside Si3N4 waveguides. By meeting the requirements for maximal bandwidth of the conversion efficiency spectrum, we demonstrate that group-velocity matching of the pump and SH is simultaneously satisfied, resulting in efficient SH generation from ultrashort optical pulses. The latter is employed for retrieving a carrier-envelope-offset frequency of a frequency comb by using an f-2f interferometric technique, where supercontinuum and SH of a femtosecond pulse are generated in Si3N4 waveguides. Finally, we show that the waveguide dispersion determines the QPM wavelength variation magnitude and sign due to the thermo-optic effect.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.396489

所属栏目:Integrated Optics

基金项目:Schweizerischer Nationalfonds zur F?rderung der Wissenschaftlichen Forschung10.13039/501100001711; U.S. Air Force10.13039/100006831; Defense Advanced Research Projects Agency10.13039/100000185; European Research Council10.13039/501100000781; Microsystems Technology Office (MTO); Air Force Material Command; Air Force Office of Scientific Research10.13039/100000181; EPFL Center of MicroNanoTechnology (CMi);

收稿日期:2020-04-29

录用日期:2020-07-10

网络出版日期:2020-07-10

作者单位    点击查看

Edgars Nitiss:Ecole Polytechnique Fédérale de Lausanne (EPFL), Photonic Systems Laboratory (PHOSL), STI-IEL, Station 11, CH-1015 Lausanne, Switzerland
Boris Zabelich:Ecole Polytechnique Fédérale de Lausanne (EPFL), Photonic Systems Laboratory (PHOSL), STI-IEL, Station 11, CH-1015 Lausanne, Switzerland
Ozan Yakar:Ecole Polytechnique Fédérale de Lausanne (EPFL), Photonic Systems Laboratory (PHOSL), STI-IEL, Station 11, CH-1015 Lausanne, Switzerland
Junqiu Liu:Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Photonics and Quantum Measurements (LPQM), SB-IPHYS, Station 3, CH-1015 Lausanne, Switzerland
Rui Ning Wang:Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Photonics and Quantum Measurements (LPQM), SB-IPHYS, Station 3, CH-1015 Lausanne, Switzerland
Tobias J. Kippenberg:Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Photonics and Quantum Measurements (LPQM), SB-IPHYS, Station 3, CH-1015 Lausanne, Switzerland
Camille-Sophie Brès:Ecole Polytechnique Fédérale de Lausanne (EPFL), Photonic Systems Laboratory (PHOSL), STI-IEL, Station 11, CH-1015 Lausanne, Switzerland

联系人作者:Camille-Sophie Brès(camille.bres@epfl.ch)

备注:Schweizerischer Nationalfonds zur F?rderung der Wissenschaftlichen Forschung10.13039/501100001711; U.S. Air Force10.13039/100006831; Defense Advanced Research Projects Agency10.13039/100000185; European Research Council10.13039/501100000781; Microsystems Technology Office (MTO); Air Force Material Command; Air Force Office of Scientific Research10.13039/100000181; EPFL Center of MicroNanoTechnology (CMi);

【1】J. Leuthold, C. Koos and W. Freude. Nonlinear silicon photonics. Nat. Photonics. 4, 535-544(2010).

【2】E. Timurdogan, C. V. Poulton, M. J. Byrd and M. R. Watts. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photonics. 11, 200-206(2017).

【3】A. L. Gaeta, M. Lipson and T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics. 13, 158-169(2019).

【4】D. J. Moss, R. Morandotti, A. L. Gaeta and M. Lipson. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics. 7, 597-607(2013).

【5】C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer and M. Lon?ar. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica. 5, 1438-1441(2018).

【6】C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer and M. Lon?ar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature. 562, 101-104(2018).

【7】C. Xiong, W. H. P. Pernice and H. X. Tang. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett. 12, 3562-3568(2012).

【8】B. Dong, X. Luo, S. Zhu, M. Li, D. Hasan, L. Zhang, S. J. Chua, J. Wei, Y. Chang, G.-Q. Lo, K. W. Ang, D.-L. Kwong and C. Lee. Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics. Opt. Lett. 44, 73-76(2019).

【9】A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan and H. X. Tang. 17000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Appl. Phys. Lett. 113, (2018).

【10】J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu and H. X. Tang. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica. 6, 1455-1460(2019).

【11】M. M. Fejer, G. A. Magel, D. H. Jundt and R. L. Byer. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron. 28, 2631-2654(1992).

【12】A. Billat, D. Grassani, M. H. P. Pfeiffer, S. Kharitonov, T. J. Kippenberg and C. S. Brès. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 8, (2017).

【13】E. Nitiss, T. Liu, D. Grassani, M. Pfeiffer, T. J. Kippenberg and C.-S. Brès. Formation rules and dynamics of photo-induced χ(2) gratings in silicon nitride waveguides. ACS Photon. 7, 147-153(2019).

【14】M. A. G. Porcel, J. Mak, C. Taballione, V. K. Schermerhorn, J. P. Epping, P. J. M. van der Slot and K.-J. Boller. Photo-induced second-order nonlinearity in stoichiometric silicon nitride waveguides. Opt. Express. 25, 33143-33159(2017).

【15】M. A. G. Porcel, J. Mak, C. Taballione, V. K. Schermerhorn, J. P. Epping, P. J. M. van der Slot and K.-J. Boller. Photoinduced χ(2) for second harmonic generation in stoichiometric silicon nitride waveguides. Proc. SPIE. 10228, (2017).

【16】D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams and S. B. Papp. Self-organized nonlinear gratings for ultrafast nanophotonics. Nat. Photonics. 13, 494-499(2019).

【17】D. Z. Anderson, V. Mizrahi and J. E. Sipe. Model for second-harmonic generation in glass optical fibers based on asymmetric photoelectron emission from defect sites. Opt. Lett. 16, 796-798(1991).

【18】N. B. Baranova, B. Y. Zel’dovich, A. N. Chudinov and A. A. Shul’ginov. Theory and observation of polar asymmetry of photoionization in a field with <E3>≠0. Zh. Eksp. Teor. Fiz. 98, 1857-1868(1990).

【19】E. M. Dianov and D. S. Starodubov. Photoinduced generation of the second harmonic in centrosymmetric media. Quantum Electron. 25, 395-407(1995).

【20】E. Nitiss, O. Yakar, A. Stroganov and C.-S. Brès. Highly tunable second-harmonic generation in all-optically poled silicon nitride waveguides. Opt. Lett. 45, 1958-1961(2020).

【21】A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller and A. L. Gaeta. Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40, 5117-5120(2015).

【22】H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C.-S. Brès and T. J. Kippenberg. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photonics. 12, 330-335(2018).

【23】D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg and C.-S. Brès. Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum. Nat. Commun. 10, (2019).

【24】J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, C. Fallnich and K.-J. Boller. On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth. Opt. Express. 23, 19596-19604(2015).

【25】T. J. Kippenberg, R. Holzwarth and S. A. Diddams. Microresonator-based optical frequency combs. Science. 332, 555-559(2011).

【26】J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, M. Zervas and T. J. Kippenberg. Ultralow-power chip-based soliton microcombs for photonic integration. Optica. 5, 1347-1353(2018).

【27】X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta and M. Lipson. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica. 4, 619-624(2017).

【28】Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner and M. Qi. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica. 3, 1171-1180(2016).

【29】Z. Ye, K. Twayana, P. A. Andrekson and V. Torres-Company. High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics. Opt. Express. 27, 35719-35727(2019).

【30】S. Ramelow, A. Farsi, S. Clemmen, D. Orquiza, K. Luke, M. Lipson and A. L. Gaeta. Silicon-nitride platform for narrowband entangled photon generation. (2015).

【31】C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss and R. Morandotti. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science. 351, 1176-1180(2016).

【32】M. Jankowski, C. Langrock, B. Desiatov, A. Marandi, C. Wang, M. Zhang, C. R. Phillips, M. Lon?ar and M. M. Fejer. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica. 7, 40-46(2020).

【33】M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani and T. J. Kippenberg. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica. 5, 884-892(2018).

【34】L. Cai, A. V. Gorbach, Y. Wang, H. Hu and W. Ding. Highly efficient broadband second harmonic generation mediated by mode hybridization and nonlinearity patterning in compact fiber-integrated lithium niobate nano-waveguides. Sci. Rep. 8, (2018).

【35】G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, U. Keller, J. L. Hall and S. T. Cundiff. Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics. Science. 286, 1507-1512(1999).

【36】H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter and U. Keller. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B. 69, 327-332(1999).

【37】R. Luo, Y. He, H. Liang, M. Li and Q. Lin. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica. 5, 1006-1011(2018).

【38】X. Xue, Y. Xuan, C. Wang, P.-H. Wang, Y. Liu, B. Niu, D. E. Leaird, M. Qi and A. M. Weiner. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Opt. Express. 24, 687-698(2016).

引用该论文

Edgars Nitiss, Boris Zabelich, Ozan Yakar, Junqiu Liu, Rui Ning Wang, Tobias J. Kippenberg, and Camille-Sophie Brès, "Broadband quasi-phase-matching in dispersion-engineered all-optically poled silicon nitride waveguides," Photonics Research 8(9), 1475-1483 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF