Facile preparation of silver nanoparticles in bulk silicate glass by high-repetition-rate picosecond laser pulses
Abstract
One-step precipitation of Ag nanoparticles in Ag+-doped silicate glasses was achieved through a focused picosecond laser with a high repetition rate. Absorption spectra and transmission electron microscopy (TEM) confirmed that metallic Ag nanoparticles were precipitated within glass samples in the laser-written domain. The surface plasmon absorbance fits well with the experimental absorption spectrum. The nonlinear absorption coefficient β is determined to be 2.47 × 10-14 m/W by fitting the open aperture Z-scan curve, which originated from the intraband transition in the
所属栏目:Nonlinear Optics
基金项目:This work was supported by the National Key Research and Development Program of China (No. 2016YFB1102405), National Natural Science Foundation of China (No. 61675214), and Shanghai Sailing Program (No. 20YF1455200).
收稿日期:2020-06-28
录用日期:2020-09-04
网络出版日期:2020-12-02
作者单位 点击查看
钱 静:State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
王承伟:State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
王关德:State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
王雪辉:Technology Center, Huagong Laser Engineering Co., Ltd., Wuhan 430000, China
赵全忠:State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
联系人作者:赵全忠(zqz@siom.ac.cn)
备注:This work was supported by the National Key Research and Development Program of China (No. 2016YFB1102405), National Natural Science Foundation of China (No. 61675214), and Shanghai Sailing Program (No. 20YF1455200).
【1】D. EatonD. Eaton. Nonlinear optical materials. Science. 253, (1991).
【2】L. Yun, Y. Qiu, C. Yang, J. Xing, K. Yu, X. Xu and W. Wei. PbS quantum dots as a saturable absorber for ultrafast laser. Photon. Res. 6, (2018).
【3】G. Zhou and W. Wong. Organometallic acetylides of PtII, AuI and HgII as new generation optical power limiting materials. Chem. Soc. Rev. 40, (2011).
【4】K. Inoue and H. Toba. Wavelength conversion experiment using fiber four-wave mixing. IEEE Photon. Technol. Lett. 4, (1992).
【5】M. Y. Shubar, H. L. Saadon and S. J. Abbas. Nonlinear optical switching and all-figures of merit in Bi2S3-xSex/PMMA nanocomposite films investigated by Z scan under visible CW laser. Chin. Opt. Lett. 18, (2020).
【6】G. Bautista, J. Makitalo, Y. Chen, V. Dhaka, M. Grasso, L. Karvonen, H. Jiang, M. J. Huttunen, T. Huhtio and H. Lipsanen. Second-harmonic generation imaging of semiconductor nanowires with focused vector beams. Nano Lett. 15, (2015).
【7】W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack and L. E. Johnson. Silicon-organic and plasmonic-organic hybrid photonics. ACS Photon. 4, (2017).
【8】Y. I. Park, K. T. Lee, Y. D. Suh and T. Hyeon. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem. Soc. Rev. 44, (2015).
【9】J. L. Bredas, C. Adant, P. Tackx, A. Persoons and B. Pierce. Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chem. Rev. 94, (1994).
【10】X. Wang, Z. Wang, J. Yu, C. Liu, X. Zhao and Q. Gong. Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass. Chem. Phys. Lett. 399, (2004).
【11】M. He, Y. Chen, L. Zhu, H. Wang, X. Wang, X. Xu and Z. Ren. Third-order nonlinear optical properties of WTe2 films synthesized by pulsed laser deposition. Photon. Res. 7, (2019).
【12】Z. Zhang, Z. Lü, X. Yang, H. Chai, L. Meng and T. Yang. 25 Gb/s directly modulated ground-state operation of 1.3 μm InAs/GaAs quantum dot lasers up to 75°C. Chin. Opt. Lett. 18, (2020).
【13】M. Brust, D. Bethell and C. J. Kiely. Self-assembled gold nanoparticle thin films with nonmetallic optical and electronic properties. Langmuir. 14, (1998).
【14】K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki and A. Nakamura. Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and Ag particles. J. Opt. Soc. Am. B. 11, (1994).
【15】M. Yamane and Y. Asahara. Glasses Photonics. : Cambridge University, (2005).
【16】A. J. Almosawe and H. L. Saadon. Nonlinear optical and optical limiting properties of new structures of organic nonlinear optical materials for photonic applications. Chin. Opt. Lett. 11, (2013).
【17】B. Can-Uc, R. Rangel-Rojo, L. Rodriguez-Fernandez and A. Oliver. Polarization selectable nonlinearities in elongated Ag nanoparticles embedded in silica. Opt. Mater. Express. 3, (2013).
【18】G. Lin, D. Tan, F. Luo, D. Chen, Q. Zhao and J. Qiu. Linear and nonlinear optical properties of glasses doped with Bi nanoparticles. J. Non. Cryst. Solids. 357, (2011).
【19】E. Danielson, V. Dhamodharan and A. Porkovich. Gas-phase synthesis for label-free biosensors: zinc-oxide nanowires functionalized with gold nanoparticles. Sci. Rep. 9, (2019).
【20】P. P. Kiran, B. N. S. Bhaktha, D. N. Rao and G. De. Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag–Cu nanoclusters co-doped in SiO2 Sol-Gel films. J. Appl. Phys. 96, (2004).
【21】J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang and K. Hirao. Manipulation of gold nanoparticles inside transparent materials. Angew. Chem. Int. Ed. Engl. 43, (2004).
【22】J. Qiu, M. Shirai, T. Nakaya, J. Si, X. Jiang, C. Zhu and K. Hirao. Space-selective precipitation of metal nanoparticles inside glasses. Appl. Phys. Lett. 81, (2002).
【23】N. Ma, H. Ma, M. Zhong, J. Yang, Y. Dai, G. Ye, Z. Yue, G. Ma and J. Qiu. Direct precipitation of Ag nanoparticles induced by a high repetition femtosecond laser. Mater. Lett. 63, (2009).
【24】J. Guo, B. Hua, G. Qian, M. Wang, J. Si, J. Qiu and K. Hirao. Direct space selective precipitation of Ag nanoparticles inside silicate glasses through local heating of erbium. J. Alloys Compd. 468, (2009).
【25】Y. Dai, G. Yu, M. He, H. Ma, X. Yan and G. Ma. High repetition rate femtosecond laser irradiation-induced elements redistribution in Ag-doped glass. Appl. Phys. B. 103, (2011).
【26】J. Ashok, M. Kostrzewa, A. Ingram, N. Venkatramaiah, M. S. Reddy, V. R. Kumar, M. Piasecki and N. Veeriaiah. Structural and dielectric features of silver doped sodium antimonate glass ceramics. J. Alloys Compd. 791, (2019).
【27】A. Podlipensky, A. Abdolvand, G. Seifert and H. Graener. Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles. Appl. Phys. A. 80, (2004).
【28】B. Chichkov and C. Momma. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A. 63, (1996).
【29】M. Sheik-Bahae, A. A. Said, J. D. Hagen and E. W. Van Stryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. 26, (1990).
【30】M. Yamane and Y. Asahara. Glasses for Photonics. : Cambridge University, (2000).
【31】N. ChristensenN. Christensen. The band structure of Ag and optical interband transitions. Phys. Status Solid. 54, (1972).
引用该论文
Danyang Shen, Jing Qian, Chengwei Wang, Guande Wang, Xuehui Wang, Quanzhong Zhao, "Facile preparation of silver nanoparticles in bulk silicate glass by high-repetition-rate picosecond laser pulses," Chinese Optics Letters 19(1), 011901 (2021)