首页 > 论文 > 激光与光电子学进展 > 57卷 > 20期(pp:201023--1)

基于FCM与ADSCM的红外与可见光图像融合

Infrared and Visible Light Image Fusion Based on FCM and ADSCM

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于模糊C-均值(FCM)聚类的模型具有在图像分割中可以保留原始图像中大部分信息的优点,自适应双通道脉冲发放皮层模型(ADSCM)具有全局耦合、脉冲同步、参数少、计算效率高以及可以很好地处理较暗区域信息等优点。提出了一种基于FCM与ADSCM的红外与可见光图像融合算法。源图像经过非下采样剪切波变换(NSST)分解后,通过将FCM与ADSCM相结合,对相应的子带图像进行融合,最终经过逆NSST得到重建的新图像。实验结果表明:该方法与其他传统方法相比,可以在保留可见光背景信息的同时有效地提取红外图像的目标信息;与其他几种方法相比,所提方法在平均梯度、互信息以及边缘保留因子等方面有明显的改进。

Abstract

The model based on fuzzy C-mean (FCM) clustering has the advantage of retaining most of the information of the original image for image segmentation. The adaptive dual-channel spiking cortical model (ADSCM) has the advantages of global coupling, pulse synchronization, less parameters, and high computational efficiency, and can process the information of darker images well. An infrared and visible light image fusion algorithm based on FCM and ADSCM is proposed. After the source image is decomposed by non-subsampled shearlet transform (NSST), the corresponding sub-band images are fused by combining FCM and ADSCM, and finally the new image is reconstructed by inverse NSST. Experimental results show that compared with other traditional methods, the proposed method can effectively extract the target information of the infrared image while retaining the visible light background information, and has obvious improvement in average gradient, mutual information, and edge retention factor.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP391

DOI:10.3788/LOP57.201023

所属栏目:图像处理

基金项目:国家自然科学基金、西安邮电大学研究生创新基金;

收稿日期:2020-01-13

修改稿日期:2020-02-24

网络出版日期:2020-10-01

作者单位    点击查看

巩稼民:西安邮电大学通信与信息工程学院, 陕西 西安 710121
刘爱萍:西安邮电大学通信与信息工程学院, 陕西 西安 710121
张晨:西安邮电大学通信与信息工程学院, 陕西 西安 710121
张丽红:西安邮电大学通信与信息工程学院, 陕西 西安 710121
郝倩文:西安邮电大学通信与信息工程学院, 陕西 西安 710121

联系人作者:刘爱萍(lap1024@163.com)

备注:国家自然科学基金、西安邮电大学研究生创新基金;

【1】Wang Y M, Chen D M, Zhao G B. Image fusion algorithm of infrared and visible images based on target extraction and Laplace transformation [J]. Laser & Optoelectronics Progress. 2017, 54(1): 011002.
汪玉美, 陈代梅, 赵根保. 基于目标提取与拉普拉斯变换的红外和可见光图像融合算法 [J]. 激光与光电子学进展. 2017, 54(1): 011002.

【2】Zhu L, Sun F, Xia F L, et al. Review on image fusion research [J]. Transducer and Microsystem Technology. 2014, 33(2): 14-18.
朱炼, 孙枫, 夏芳莉, 等. 图像融合研究综述 [J]. 传感器与微系统. 2014, 33(2): 14-18.

【3】Liu Z J, Jia P, Xia Y H, et al. Development and performance evaluation of infrared and visual image fusion technology [J]. Laser & Infrared. 2019, 49(5): 633-640.
刘智嘉, 贾鹏, 夏寅辉, 等. 基于红外与可见光图像融合技术发展与性能评价 [J]. 激光与红外. 2019, 49(5): 633-640.

【4】Burt P, Adelson E. The Laplacian pyramid as a compact image code [J]. IEEE Transactions on Communications. 1983, 31(4): 532-540.

【5】Li H, Manjunath B S, Mitra S K. Multi-sensor image fusion using the wavelet transform [J]. Graphical Model and Image Processing. 1995, 57(3): 235-245.

【6】Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transactions on Image Processing. 2005, 14(12): 2091-2106.

【7】da Cunha A L, Zhou J, Do M N. The nonsubsampled contourlet transform: theory, design, and applications [J]. IEEE Transactions on Image Processing. 2006, 15(10): 3089-3101.

【8】Wang Z H, Zhao B J, Shen T Z. Image fusion rule based on PCNN [J]. Laser & Infrared. 2008, 38(5): 485-488.
王志慧, 赵保军, 沈庭芝. 基于PCNN的图像融合规则 [J]. 激光与红外. 2008, 38(5): 485-488.

【9】Zhan K, Zhang H J, Ma Y D. New spiking cortical model for invariant texture retrieval and image processing [J]. IEEE Transactions on Neural Networks. 2009, 20(12): 1980-1986.

【10】Jiang Z T, Wu H, Zhou X L. Infrared and visible image fusion algorithm based on improved guided filtering and dual-channel spiking cortical model [J]. Acta Optica Sinica. 2018, 38(2): 0210002.
江泽涛, 吴辉, 周哓玲. 基于改进引导滤波和双通道脉冲发放皮层模型的红外与可见光图像融合算法 [J]. 光学学报. 2018, 38(2): 0210002.

【11】Li X C, Liu H K, Wang F, et al. The survey of fuzzy clustering method for image segmentation Journal of Image and Graphics[J]. 0, 2012(4): 447-458.
李旭超, 刘海宽, 王飞, 等. 图像分割中的模糊聚类方法 中国图象图形学报[J]. 0, 2012(4): 447-458.

【12】Guo K H, Labate D. Optimally sparse multidimensional representation using shearlets [J]. SIAM Journal on Mathematical Analysis. 2007, 39(1): 298-318.

【13】Easley G, Labate D, Lim W Q. Sparse directional image representations using the discrete shearlet transform [J]. Applied and Computational Harmonic Analysis. 2008, 25(1): 25-46.

【14】Kong W W, Wang B H, Li B B. Image fusion multiresolution non-subsampled[M]. Xi''''an: Xidian University Press, 2015.
孔韦韦, 王炳和, 李斌兵. 图像融合技术[M]. 西安: 西安电子科技大学出版社, 2015.

【15】Zhan K. Spiking cortical model and its application [D]. Lanzhou: Lanzhou University. 2010.
绽琨. 脉冲发放皮层模型及其应用 [D]. 兰州:兰州大学. 2010.

【16】Wang N Y. Spiking cortical model for image fusion [D]. Lanzhou: Lanzhou University. 2014.
王念一. 脉冲发放皮层模型图像融合技术研究 [D]. 兰州:兰州大学. 2014.

【17】Huang W, Jing Z L. Evaluation of focus measures in multi-focus image fusion [J]. Pattern Recognition Letters. 2007, 28(4): 493-500.

【18】Gong J M, Wang B B, Qiao L, et al. Image fusion method based on improved NSCT transform and PCNN model . [C]∥2016 9th International Symposium on Computational Intelligence and Design (ISCID), December 10-11, 2016, Hangzhou, China. New York: IEEE. 2016, 28-31.

【19】巩稼民, 薛孟乐, 任帆, 等. 基于邻域特征与SCM相结合的红外与可见光图像融合 [J]. 红外技术. 2018, 40(11): 1091-1097.
Gong J M, Xue M L, Ren F, et al. Infrared and visible image fusion based on the combination of neighborhood features and SCM [J]. Infrared Technology. 2018, 40(11): 1091-1097.

【20】Xiang T Z, Yan L, Gao R R. A fusion algorithm for infrared and visible images based on adaptive dual-channel unit-linking PCNN in NSCT domain [J]. Infrared Physics & Technology. 2015, 69: 53-61.

引用该论文

Gong Jiamin,Liu Aiping,Zhang Chen,Zhang Lihong,Hao Qianwen. Infrared and Visible Light Image Fusion Based on FCM and ADSCM[J]. Laser & Optoelectronics Progress, 2020, 57(20): 201023

巩稼民,刘爱萍,张晨,张丽红,郝倩文. 基于FCM与ADSCM的红外与可见光图像融合[J]. 激光与光电子学进展, 2020, 57(20): 201023

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF