首页 > 论文 > 激光与光电子学进展 > 56卷 > 17期(pp:170621--1)

液晶填充光纤U型腔的偏振光谱及温度特性

Polarization Spectra of U-Shaped Optical Fiber Cavities Filled with Liquid Crystal and Their Temperature Characteristics

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

将向列相液晶(E7)与光纤U型腔相结合,通过外加电场对液晶分子进行取向,分别获得了寻常光和非寻常光的干涉光谱,并获得了其不同的温度系数特性。实验发现:在液晶清亮点以下时,随着温度的升高,非寻常光的干涉光谱向短波长方向移动,而寻常光干涉光谱则一般向长波长方向移动;当接近清亮点时,光谱的移动速度加快;在液晶清亮点以上时,偏振相关干涉消失,干涉光谱随温度升高而发生蓝移。进一步推导了液晶的温度系数,理论分析与实验结果一致。该系统具有结构紧凑、集成度高和稳定性好等优点,在液晶的温度效应表征、偏振光学以及光传感等领域中具有良好的应用前景。

Abstract

Herein, two sets of interference spectra corresponding to the ordinary and extraordinary waves are obtained by combining the nematic E7 liquid crystal (LC) with a U-shaped optical fiber cavity and applying an external electric field to the LC. In particular, their differing temperature characteristics are investigated. Experimental results show that when the temperature is below the LC’s clearing point, the interference spectrum of the extraordinary wave blue-shifts, whereas the spectrum of the ordinary wave generally red-shifts with the increasing temperature. As the temperature approaches the LC’s clearing point, these shifts become increasingly faster. However, when the temperature is above the clearing point, the polarization dependence of the structure vanishes; further, the interference spectrum blue-shifts as the temperature increases. Then, the temperature coefficients of the refractive index in case of the LC are theoretically analyzed, which is consistent with the experimental results. The proposed system is compact, highly integrated, and stable, denoting its considerable potential in fields such as LC temperature characterization, polarization optics, and optical sensing.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.170621

所属栏目:功能光纤

基金项目:国家自然科学基金、广东省自然科学杰出青年基金;

收稿日期:2019-03-04

修改稿日期:2019-04-01

网络出版日期:2019-09-01

作者单位    点击查看

马宽明:暨南大学光子技术研究院广东省光纤传感与通信技术重点实验室, 广东 广州511486
刘梓轩:暨南大学光子技术研究院广东省光纤传感与通信技术重点实验室, 广东 广州511486
刘培元:暨南大学光子技术研究院广东省光纤传感与通信技术重点实验室, 广东 广州511486
李杰:暨南大学光子技术研究院广东省光纤传感与通信技术重点实验室, 广东 广州511486
武创:暨南大学光子技术研究院广东省光纤传感与通信技术重点实验室, 广东 广州511486
关柏鸥:暨南大学光子技术研究院广东省光纤传感与通信技术重点实验室, 广东 广州511486

联系人作者:李杰(tjieli@jnu.edu.com)

备注:国家自然科学基金、广东省自然科学杰出青年基金;

【1】Li C, Lu X Q, Yu C B et al. Fiber-optic acoustic sensor based on multi-layered graphene material. Acta Optica Sinica. 38(3), (2018).
李晨, 陆雪琪, 庾财斌 等. 基于多层石墨烯材料的光纤声波传感器. 光学学报. 38(3), (2018).

【2】Yoon M S, Kim Y J, Kim S K et al. Enhancement of temperature sensitivity of a Mach-Zehnder interferometer based on a polymer-overlaid microfiber. Proceedings of SPIE. 9634, (2015).

【3】Li J, Fan P C, Tian Z et al. Potential for simultaneous measurement of magnetic field and temperature utilizing fiber taper modal interferometer and magnetic fluid. IEEE Photonics Journal. 8(6), (2016).

【4】Chen Q, Lin M R, Lee J E et al. Nanocomposites with very large electro-optic effect and widely tunable refractive index. Applied Physics Letters. 89(14), (2006).

【5】Song L, Lee W K and Wang X S. AC electric field assisted photo-induced high efficiency orientational diffractive grating in nematic liquid crystals. Optics Express. 14(6), 2197-2202(2006).

【6】Lei X Q, Yu Y T, Feng W J et al. A novel fiber temperature sensor with liquid-crystal filled SM-NC-SM structure. Journal of Optoelectronics·Laser. 26(12), 2278-2282(2015).
雷雪琴, 于雅婷, 俸闻婧 等. 一种新型的液晶填充SM-NC-SM结构光纤温度传感器. 光电子·激光. 26(12), 2278-2282(2015).

【7】Wang D D, Li B H, Qi B et al. Design for liquid crystal photonic crystal fiber and thermal tuning characteristic analysis. Laser & Optoelectronics Progress. 54(3), (2017).
王豆豆, 李百宏, 齐兵 等. 液晶光子晶体光纤的设计及热调谐特性分析. 激光与光电子学进展. 54(3), (2017).

【8】Blinov L M. Structure and properties of liquid crystals. Dordrecht: Springer. 285-340(2011).

【9】Yang D K and Wu S T. Fundamentals of liquid crystal devices. Hoboken: John Wiley & Sons, Inc. 1-40(2014).

【10】Hsiao V K S and Ko C Y. Light-controllable photoresponsive liquid-crystal photonic crystal fiber. Optics Express. 16(17), 12670-12676(2008).

【11】Hsiao V K S, Li Z, Chen Z et al. . Optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay. Optics Express. 17(22), 19988-19995(2009).

【12】Luo H M, Wang C J, Ji Y H et al. Spectral tuning of a locally bent microfiber taper interferometer with a nanosized liquid crystal overlay. Applied Optics. 55(26), 7393-7398(2016).

【13】Chen X Y, Du F, Guo T et al. Liquid crystal-embedded tilted fiber grating electric field intensity sensor. Journal of Lightwave Technology. 35(16), 3347-3353(2017).

【14】Duan D W, Rao Y J, Xu L C et al. In-fiber Mach-Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity. Sensors and Actuators B: Chemical. 160(1), 1198-1202(2011).

【15】Sun X Y, Chu D K, Dong X R et al. Highly sensitive refractive index fiber inline Mach-Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching. Optics & Laser Technology. 77, 11-15(2016).

【16】Su D S, Ma K M, Sun L P et al. Refractive index sensing characteristics of reflective fiber interferometer based on large offset splicing. Laser & Optoelectronics Progress. 55(8), (2018).
苏达顺, 马宽明, 孙立朋 等. 基于大偏置量熔接的反射式光纤型干涉仪的折射率传感特性. 激光与光电子学进展. 55(8), (2018).

【17】Han Y G, Lee B H, Han W T et al. Fibre-optic sensing applications of a pair of long-period fibre gratings. Measurement Science and Technology. 12(7), 778-781(2001).

【18】Bhardwaj V and Singh V K. Fabrication and characterization of cascaded tapered Mach-Zehnder interferometer for refractive index sensing. Sensors and Actuators A: Physical. 244, 30-34(2016).

【19】Xie N J, Zhang H, Liu B et al. Characterization of temperature-dependent refractive indices for nematic liquid crystal employing a microfiber-assisted Mach-Zehnder interferometer. Journal of Lightwave Technology. 35(14), 2966-2972(2017).

【20】Chen C H, Wu W T and Wang J N. All-fiber microfluidic multimode Mach-Zehnder interferometers as high sensitivity refractive index sensors. Microsystem Technologies. 23(2), 429-440(2017).

【21】Yu D Y and Tan H Y. Engineering optics. 538-544(2007).
郁道银, 谈恒英. 工程光学. 538-544(2007).

【22】Li J, Gauza S and Wu S T. Temperature effect on liquid crystal refractive indices. Journal of Applied Physics. 96(1), 19-24(2004).

引用该论文

Kuanming Ma, Zixuan Liu, Peiyuan Liu, Jie Li, Chuang Wu, Baiou Guan. Polarization Spectra of U-Shaped Optical Fiber Cavities Filled with Liquid Crystal and Their Temperature Characteristics[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170621

马宽明, 刘梓轩, 刘培元, 李杰, 武创, 关柏鸥. 液晶填充光纤U型腔的偏振光谱及温度特性[J]. 激光与光电子学进展, 2019, 56(17): 170621

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF