首页 > 论文 > 激光与光电子学进展 > 56卷 > 18期(pp:181401--1)

基于Bilateral-Frangi滤波的桥梁裂缝检测算法

Bridge Crack Detection Algorithm Based on Bilateral-Frangi Filter

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为解决桥梁底部裂缝检测结果受噪声影响大的问题,提出一种基于Bilateral-Frangi滤波的裂缝检测算法。常规Frangi滤波算法的物理模型与裂缝的灰度值分布具有极高的匹配度,但其预处理环节在平滑噪声的同时会去除裂缝的高频信息,即会破坏裂缝的边缘结构。针对此问题,本文优化了常规Frangi算法的物理模型,在预处理环节加入灰度值域的高斯核函数,与原有的空域高斯核函数构成Bilateral高斯核函数,实现了在保边去噪的同时增强裂缝的功能,提高了裂缝检测的准确性。实验结果显示,本文算法的误检率为0.07%,漏检率为3.31%,在对比算法中表现最出色,为高噪声图像的裂缝检测提供了一种新思路。

Abstract

Bridge crack detection is greatly affected by noise. To solve this issue, this study proposes a new detection algorithm based on the Bilateral-Frangi filter. The conventional Frangi filter algorithm model fits the gray-value distribution of the cracks very well, but as its preprocessing step decreases the high-frequency information of the cracks in noise smoothing, it destroys the edge structures of the cracks. To solve this problem, the physical model of the conventional Frangi filter algorithm is optimized by adding a gray-value-domain Gaussian kernel function in the preprocessing step to construct a Bilateral Gaussian kernel function combined with an original spatial-domain Gaussian kernel function. This algorithm enhances the crack structure and realizes edge protection and denoising at the same time, which improves the accuracy of crack detection. Experimental results show a false detection rate of 0.07% and a missed detection rate of 3.31%. The proposed algorithm provides a solution for crack detection with the best performance in comparison to other algorithms.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.181401

所属栏目:激光器与激光光学

收稿日期:2019-03-06

修改稿日期:2019-04-04

网络出版日期:2019-09-01

作者单位    点击查看

李灏天:天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室, 天津 300072
陈晓冬:天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室, 天津 300072
徐怀远:天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室, 天津 300072
许鸿雁:天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室, 天津 300072
汪毅:天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室, 天津 300072
蔡怀宇:天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室, 天津 300072

联系人作者:陈晓冬(xdchen@tju.edu.cn)

【1】Zhan J G. Study on the bridge bottom crack inspection and recognition method based on image processing. Beijing: Beijing Jiaotong University. 37-44(2017).
占继刚. 基于图像处理的桥梁底面裂缝检测识别方法研究. 北京: 北京交通大学. 37-44(2017).

【2】Cai G M. Study on the video detection system of crack on the bottom of high-speed rail bridge. Beijing: Beijing Jiaotong University. 36-41(2011).
蔡光明. 高速铁路桥梁底面裂缝的视频检测系统研究. 北京: 北京交通大学. 36-41(2011).

【3】Salman M, Mathavan S, Kamal K et al. Pavement crack detection using the Gabor filter. [C]//16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), October 6-9, 2013, Hague, Netherlands. New York: IEEE. 2039-2044(2013).

【4】Liu C L, Koga M and Fujisawa H. Gabor feature extraction for character recognition: comparison with gradient feature. [C]//Eighth International Conference on Document Analysis and Recognition (ICDAR''''05), September 1, 2005, Seoul, Korea. New York: IEEE. 121-125(2005).

【5】Mancini A, Malinverni E S, Frontoni E et al. Road pavement crack automatic detection by MMS images. [C]//21st Mediterranean Conference on Control and Automation, June 25-28, 2013, Platanias, Chania-Crete, Greece. New York: IEEE. 1589-1596(2013).

【6】Cubero-Fernandez A. Rodriguez-Lozano F J, Villatoro R, et al. Efficient pavement crack detection and classification. EURASIP Journal on Image and Video Processing. 2017, (2017).

【7】David Jenkins M, Carr T A, Iglesias M I et al. A deep convolutional neural network for semantic pixel-wise segmentation of road and pavement surface cracks. [C]//2018 26th European Signal Processing Conference (EUSIPCO), September 3-7, 2018, Rome, Italy. New York: IEEE. 2120-2124(2018).

【8】Frangi A F, Niessen W J, Vincken K L et al. Multiscale vessel enhancement filtering. //Wells W M, Colchester A, Delp S. Medical image computing and computer-assisted intervention—MICCAI''''98. Lecture note in computer science. Berlin, Heidelberg: Springer. 1496, 130-137(1998).

【9】Jimenez-Carretero D, Santos A, Kerkstra S et al. 3D Frangi-based lung vessel enhancement filter penalizing airways. [C]//2013 IEEE 10th International Symposium on Biomedical Imaging, April 7-11, 2013, San Francisco, CA, USA. New York: IEEE. 926-929(2013).

【10】Wang L Y, Wang Y, Chen X D et al. Enhancement of MSCT vascular image based on fast Hessian matrix. Nanotechnology and Precision Engineering. 1(1), 41-47(2018).
王丽瑶, 汪毅, 陈晓冬 等. Hessian 矩阵的 MSCT 图像血管增强. 纳米技术与精密工程. 1(1), 41-47(2018).

【11】Tomasi C and Manduchi R. Bilateral filtering for gray and color images. [C]//Sixth International Conference on Computer Vision, January 7, 1998, Bombay, India. New York: IEEE. 839-846(1998).

【12】Chaudhury K N, Sage D and Unser M. Fast O(1) bilateral filtering using trigonometric range kernels. IEEE Transactions on Image Processing. 20(12), 3376-3382(2011).

【13】Porikli F. Constant time O(1) bilateral filtering. [C]//2008 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2008, Anchorage, AK, USA. New York: IEEE. 3895-3902(2008).

【14】Li L F, Ma W F, Li L et al. Research on detection algorithm for bridge cracks based on deep learning Acta Automatica Sinica: 1-16[2019-06-04]. https://doi.org/10.16383/j.aas. c170052, (2018).
李良福, 马卫飞, 李丽 等. 基于深度学习的桥梁裂缝检测算法研究 自动化学报: 1-16[2019-06-04]. https://doi.org/10.16383/j.aas. c170052, (2018).

【15】Zeng J X, Zhou L L and Fu X. Complex image line feature extraction based on improved Beamlet transform and the Canny operator. Journal of Image and Graphics. 17(7), 775-782(2012).
曾接贤, 周沥沥, 符祥. 改进的Beamlet与Canny相结合提取复杂图像线特征. 中国图象图形学报. 17(7), 775-782(2012).

【16】Liu F, Shen T S and Ma X X. Convolutional neural network based multi-band ship target recognition with feature fusion. Acta Optica Sinica. 37(10), (2017).
刘峰, 沈同圣, 马新星. 特征融合的卷积神经网络多波段舰船目标识别. 光学学报. 37(10), (2017).

【17】Shan Q W, Zheng X B, He X H et al. Fast object detection and recognition algorithm based on improved multi-scale feature maps. Laser & Optoelectronics Progress. 56(2), (2019).
单倩文, 郑新波, 何小海 等. 基于改进多尺度特征图的目标快速检测与识别算法. 激光与光电子学进展. 56(2), (2019).

引用该论文

Haotian Li,Xiaodong Chen,Huaiyuan Xu,Hongyan Xu,Yi Wang,Huaiyu Cai. Bridge Crack Detection Algorithm Based on Bilateral-Frangi Filter[J]. Laser & Optoelectronics Progress, 2019, 56(18): 181401

李灏天,陈晓冬,徐怀远,许鸿雁,汪毅,蔡怀宇. 基于Bilateral-Frangi滤波的桥梁裂缝检测算法[J]. 激光与光电子学进展, 2019, 56(18): 181401

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF