首页 > 论文 > 中国激光 > 47卷 > 9期(pp:905002--1)

二维磁光光子晶体光路的编码控制

Coding Control of Optical Path of Two-Dimensional Magneto-Optical Photonic Crystal

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于二维磁光光子晶体和拓扑光子学理论,提出一种新的光路传输网络结构,其由一系列光子晶体和空气的矩形单元组成。首先根据施加正向磁场、负向磁场和空气区域的三种情况分别标记为“+1”、“-1”和“0”并将其作为编码单元。然后构建2×2、3×3和4×4三种光路矩阵网络。最后利用COMSOL软件模拟光波的传输路径。仿真结果表明,通过不同的编码序列可以对光路实现灵活和多样的控制,从而在未来光集成回路中满足高密度光路传输和大容量信息处理的要求。

Abstract

A new optical transmission network structure is proposed based on the two-dimensional magneto-optical photonic crystal and topological photonics theory, which is composed of a series of rectangular photonic crystals and air. To create coding units, the three conditions of applying a positive magnetic field, a negative magnetic field, and an air area are marked as “+1”, “-1”, and “0”, respectively. Then, three types of optical path matrix networks of 2×2, 3×3, and 4×4 are constructed. Finally, COMSOL software package is employed to simulate the transmission path of light waves. The simulation results prove that through different coding sequences, flexible and diverse control of the optical path can be achieved. The proposed control fulfils the requirements of high density optical path transmission and large-capacity information processing in the photonic integrated circuits to emerge in the future.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O734

DOI:10.3788/CJL202047.0905002

所属栏目:光束传输与控制

基金项目:江苏省工业网络安全技术重点实验室开放基金;

收稿日期:2020-04-09

修改稿日期:2020-05-18

网络出版日期:2020-09-01

作者单位    点击查看

魏芸:江苏大学计算机科学与通信工程学院, 江苏 镇江 212013
方云团:江苏大学计算机科学与通信工程学院, 江苏 镇江 212013江苏大学江苏省工业网络安全技术重点实验室, 江苏 镇江 212013

联系人作者:方云团(fang_yt1965@sina.com)

备注:江苏省工业网络安全技术重点实验室开放基金;

【1】Liang L X, Zhang X J, Wu X S, et al. Terahertz filter and optical switch based on magnetic-photonic crystals [J]. Acta Optica Sinica. 2018, 38(5): 0513002.
梁龙学, 张晓金, 吴小所, 等. 基于磁光子晶体的太赫兹滤波器和光开关 [J]. 光学学报. 2018, 38(5): 0513002.

【2】Wang L S, Gao Y F, Zhao S C, et al. Study on multiple channel non-reciprocal transmission characteristics of one-dimensional magneto-optical photonic crystal [J]. Laser & Optoelectronics Progress. 2018, 55(4): 042301.
王立松, 高永锋, 赵舒程, 等. 一维磁光光子晶体多通道非互易传输特性研究 [J]. 激光与光电子学进展. 2018, 55(4): 042301.

【3】Wang J L, Liu Y, Chen H M. Design on terahertz polarization beam splitter based on self-collimating effect of photonic crystal [J]. Acta Optica Sinica. 2018, 38(4): 0423001.
汪静丽, 刘洋, 陈鹤鸣. 基于光子晶体自准直效应的太赫兹偏振分束器设计 [J]. 光学学报. 2018, 38(4): 0423001.

【4】Zhang Q Y, Li X. One-way rotating photonic crystal ring resonator with high quality factor [J]. IEEE Photonics Journal. 2018, 10(3): 17799886.

【5】Banerjee R. Liew T C H, Kyriienko O. Realization of Hofstadter''''s butterfly and a one-way edge mode in a polaritonic system [J]. Physical Review B. 2018, 98(7): 075412.

【6】He L J, Shen Q, Xu J, et al. One-way edge modes in a photonic crystal of semiconductor at terahertz frequencies [J]. Scientific Reports. 2018, 8(1): 8165-8172.

【7】Fang Y T, Hu J X, Xu Q S, et al. Magneto-optical storage system based on the coupling of the one-way edge modes and micro cavity modes [J]. Chinese Journal of Lasers. 2015, 42(11): 1106001.
方云团, 胡坚霞, 徐青松, 等. 基于单向边界模式与磁性微腔模式耦合的磁光存储系统 [J]. 中国激光. 2015, 42(11): 1106001.

【8】Gao Y F, He L, Xu X F, et al. Achievement of unidirectional air waveguide with extra-broad operation bandwidth in magneto-optical photonic crystals with a triangle lattice [J]. Journal of Magnetism and Magnetic Materials. 2020, 496: 165921.

【9】Goryachev M, Tobar M. Reconfigurable microwave photonic topological insulator [J]. Physical Review Applied. 2016, 6(6): 064006.

【10】Lu J C, Chen X D, Deng W M, et al. One-way propagation of bulk states and robust edge states in photonic crystals with broken inversion and time-reversal symmetrie [J]. Journal of Optics. 2018, 20(7): 075103.

【11】Cheng X J, Jouvaud C, Ni X, et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator [J]. Nature Materials. 2016, 15(5): 542-548.

【12】Li C, Hu X Y, Gao W, et al. Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator [J]. Advanced Optical Materials. 2018, 6(4): 1701071.

【13】Leykam D, Mittal S, Hafezi M, et al. Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices [J]. Physical Review Letters. 2018, 121(2): 023901.

【14】Shalaev M I, Desnavi S, Walasik W, et al. Reconfigurable topological photonic crystal [J]. New Journal of Physics. 2018, 20(2): 023040.

【15】Dobrykh D, Yulin A, Slobozhanyuk A, et al. Nonlinear control of electromagnetic topological edge states [J]. Physical Review Letters. 2018, 121(16): 163901.

【16】Zhao H, Qiao X D, Wu T W, et al. Non-Hermitian topological light steering [J]. Science. 2019, 365(6458): 1163-1166.

【17】Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials [J]. Light: Science & Applications. 2014, 3(10): e218.

【18】Yan X, Liang L J, Zhang Y T, et al. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies [J]. Acta Physica Sinica. 2015, 64(15): 158101.
闫昕, 梁兰菊, 张雅婷, 等. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究 [J]. 物理学报. 2015, 64(15): 158101.

【19】Liu S, Cui T J, Xu Q, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves [J]. Light: Science & Applications. 2016, 5(5): e16076.

【20】Zhang L, Liu S, Cui T J. Theory and application of coding metamaterials [J]. Chinese Journal of Optics. 2017, 10(1): 1-12.
张磊, 刘硕, 崔铁军. 电磁编码超材料的理论与应用 [J]. 中国光学. 2017, 10(1): 1-12.

【21】Wu H T, Liu S, Wan X, et al. Metamaterials: controlling energy radiations of electromagnetic waves via frequency coding metamaterials [J]. Advanced Science. 2017, 4(9): 1770043.

【22】Bao L, Ma Q, Bai G D, et al. Design of digital coding metasurfaces with independent controls of phase and amplitude responses [J]. Applied Physics Letters. 2018, 113(6): 063502.

【23】Xia J P, Jia D, Sun H X, et al. Programmable coding acoustic topological insulator [J]. Advanced Materials. 2018, 30(46): 1805002.

【24】Ordal M A, Long L L, Bell R J, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared [J]. Applied Optics. 1983, 22(7): 1099-1020.

【25】Ordal M A, Bell R J, Alexander R W, et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W [J]. Applied Optics. 1985, 24(24): 4493-4499.

【26】Veis M, Antos R, Visnovsky S, et al. Complete permittivity tensor in sputtered CuFe2O4 thin films at photon energies between 2 and 5 eV [J]. Materials (Basel, Switzerland). 2013, 6(9): 4096-4108.

【27】Bergman D J. The dielectric constant of a composite material: a problem in classical physics [J]. Physics Reports. 1978, 43(9): 377-407.

引用该论文

Wei Yun,Fang Yuntuan. Coding Control of Optical Path of Two-Dimensional Magneto-Optical Photonic Crystal[J]. Chinese Journal of Lasers, 2020, 47(9): 0905002

魏芸,方云团. 二维磁光光子晶体光路的编码控制[J]. 中国激光, 2020, 47(9): 0905002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF