Photonics Research, 2021, 9 (2): 02000259, Published Online: Feb. 2, 2021   

Mid-infrared photon counting and resolving via efficient frequency upconversion Download: 516次

Author Affiliations
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
2 School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
3 Jinan Institute of Quantum Technology, Jinan 250101, China
4 CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
5 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
6 e-mail: hpzeng@phy.ecnu.edu.cn
Abstract
Optical detectors with single-photon sensitivity and large dynamic range would facilitate a variety of applications. Specifically, the capability of extending operation wavelengths into the mid-infrared region is highly attractive. Here we implement a mid-infrared frequency upconversion detector for counting and resolving photons at 3 μm. Thanks to the spectrotemporal engineering of the involved optical fields, the mid-infrared photons could be spectrally translated into the visible band with a conversion efficiency of 80%. In combination with a silicon avalanche photodiode, we obtained unprecedented performance with a high overall detection efficiency of 37% and a low noise equivalent power of 1.8×10-17 W/Hz1/2. Furthermore, photon-number-resolving detection at mid-infrared wavelengths was demonstrated, for the first time to our knowledge, with a multipixel photon counter. The implemented upconversion detector exhibited a maximal resolving photon number up to 9 with a noise probability per pulse of 0.14% at the peak detection efficiency. The achieved photon counting and resolving performance might open up new possibilities in trace molecule spectroscopy, sensitive biochemical sensing, and free-space communications, among others.

Kun Huang, Yinqi Wang, Jianan Fang, Weiyan Kang, Ying Sun, Yan Liang, Qiang Hao, Ming Yan, Heping Zeng. Mid-infrared photon counting and resolving via efficient frequency upconversion[J]. Photonics Research, 2021, 9(2): 02000259.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!