首页 > 论文 > 中国激光 > 47卷 > 9期(pp:906003--1)

Gamma-Gamma大气湍流下超奈奎斯特光通信系统性能

Performance of Faster-than-Nyquist Optical Communication System under Gamma-Gamma Atmospheric Turbulence

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用超奈奎斯特传输技术可进一步提升现有大气光通信系统的传输速率,但是大气湍流的存在会严重影响系统的性能。针对这一问题,推导了Gamma-Gamma大气湍流信道中超奈奎斯特大气光通信系统的平均误码率和平均容量表达式。讨论了湍流强度、传输距离、加速因子等参数对系统性能的影响。蒙特卡罗仿真结果表明,超奈奎斯特传输技术可有效提高系统的平均容量,同时传输距离的增加和加速因子的减小对系统误码率及平均容量的影响较明显。在加速因子为0.75、信噪比为18 dB、弱湍流条件下,采用超奈奎斯特传输技术后系统的平均容量优于未引入该技术的系统的31%。

Abstract

The transmission rate of the existing atmospheric optical communication systems can be improved using the faster-than-Nyquist transmission technology; however, atmospheric turbulence will considerably affect the system performance. Therefore, in this study, expressions are derived for obtaining the average bit error rate and average capacity of the faster-than-Nyquist atmospheric optical communication systems under a Gamma-Gamma atmospheric turbulence channel. Further, the effects of the turbulence intensity, transmission distance, and acceleration constant on the system performance are discussed. The Monte-Carlo simulation results demonstrate that the average capacity of the system can be improved using the faster-than-Nyquist transmission technology. In addition, the increasing transmission distance and decreasing acceleration constant significantly affect the bit error rate and average capacity of the system. Under the weak turbulence channel condition, the average capacity of the system using the faster-than-Nyquist transmission technology is better than 31% of the system without this technology when the acceleration constant is 0.75 and the signal-to-noise ratio is 18 dB.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN929.12

DOI:10.3788/CJL202047.0906003

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金、兰州理工大学博士基金;

收稿日期:2020-01-17

修改稿日期:2020-04-23

网络出版日期:2020-09-01

作者单位    点击查看

曹明华:兰州理工大学计算机与通信学院, 甘肃 兰州 730050
武鑫:兰州理工大学计算机与通信学院, 甘肃 兰州 730050
王惠琴:兰州理工大学计算机与通信学院, 甘肃 兰州 730050
彭清斌:兰州理工大学计算机与通信学院, 甘肃 兰州 730050

联系人作者:曹明华(caominghua@lut.edu.cn)

备注:国家自然科学基金、兰州理工大学博士基金;

【1】Wang H Q, Song L H, Cao M H, et al. Compressed sensing detection of optical spatial modulationsignal in turbulent channel [J]. Optics and Precision Engineering. 2018, 26(11): 2669-2674.
王惠琴, 宋梨花, 曹明华, 等. 湍流信道下光空间调制信号的压缩感知检测 [J]. 光学精密工程. 2018, 26(11): 2669-2674.

【2】Zhang Y, Wang X, Zhao S H. Performance analysis of 2×2 relay-assisted mixed radio frequency/free space optical airborne communication system [J]. Acta Optica Sinica. 2019, 39(3): 0301003.
张韵, 王翔, 赵尚弘. 2×2中继混合射频/自由空间光航空通信系统性能分析 [J]. 光学学报. 2019, 39(3): 0301003.

【3】Muhammad S S, Brandl P, Leitgeb E, et al. VHDL based FPGA implementation of 256-ary PPM for free space optical links . [C]∥2007 9th International Conference on Transparent Optical Networks, July 1-5, 2007, Rome, Italy. New York: IEEE. 2007, 174-177.

【4】Wang X, Lai B H, Dong L Z, et al. Intra-cavity aberration compensation in 100 W-order unstable ring slab lasers [J]. Chinese Journal of Lasers. 2019, 46(8): 0801001.
王勋, 赖柏衡, 董理治, 等. 百瓦级环形非稳腔板条激光器腔内校正 [J]. 中国激光. 2019, 46(8): 0801001.

【5】Huang X H, Li C Y, Lu H H, et al. WDM free-space optical communication system of high-speed hybrid signals [J]. IEEE Photonics Journal. 2018, 10(6): 7204207.

【6】Bohata J, Komanec M, Spacil J, et al. 24--26 GHz radio-over-fiber and free-space optics for fifth-generation systems [J]. Optics Letters. 2018, 43(5): 1035-1038.

【7】Chi N, Zhao J Q, Wang Z X. Bandwidth-efficient visible light communication system based on faster-than-Nyquist pre-coded CAP modulation [J]. Chinese Optics Letters. 2017, 15(8): 080601.

【8】Mazo J E. Faster-than-Nyquist signaling [J]. Bell System Technical Journal. 1975, 54(8): 1451-1462.

【9】Colavolpe G, Foggi T, Modenini A, et al. Faster-than-Nyquist and beyond: how to improve spectral efficiency by accepting interference [J]. Optics Express. 2011, 19(27): 26600-26609.

【10】Yu T H, Zhao M J, Zhong J, et al. Low-complexity graph-based turbo equalisation for single-carrier and multi-carrier FTN signalling [J]. IET Signal Processing. 2017, 11(7): 838-845.

【11】Xu C, Gao G J, Chen S, et al. Performance of coherent detection for FTN-DFTs-OFDM signal using receiver-side quadrature duobinary shaping [J]. Optical Fiber Technology. 2016, 32: 66-70.

【12】Xiao Z P, Li B R, Fu S N, et al. First experimental demonstration of faster-than-Nyquist PDM-16QAM transmission over standard single mode fiber [J]. Optics Letters. 2017, 42(6): 1072-1075.

【13】Jana M, Lampe L, Mitra J. Interference cancellation for time-frequency packed super-Nyquist WDM systems [J]. IEEE Photonics Technology Letters. 2018, 30(24): 2099-2102.

【14】Zhu Y X, Jiang M X, Chen Z Y, et al. Terabit faster-than-Nyquist PDM 16-QAM WDM transmission with a net spectral efficiency of 7.96 b/s/Hz [J]. Journal of Lightwave Technology. 2018, 36(14): 2912-2919.

【15】Liang S Y, Qiao L, Lu X Y, et al. Enhanced performance of a multiband super-Nyquist CAP16 VLC system employing a joint MIMO equalizer [J]. Optics Express. 2018, 26(12): 15718-15725.

【16】Liang S Y, Jiang Z H, Qiao L, et al. Faster-than-Nyquist precoded CAP modulation visible light communication system based on nonlinear weighted look-up table predistortion [J]. IEEE Photonics Journal. 2018, 10(1): 7900709.

【17】Shan C, Zhou J, Guo D, et al. Hartley-domain DD-FTN algorithm for ACO-SCFDM in optical-wireless communications [J]. IEEE Photonics Journal. 2019, 11(4): 7904509.

【18】Lao C Z, Sun J F, Zhou Y, et al. Performance of coherent beam combining system with multiple aperture receiver [J]. Chinese Journal of Lasers. 2019, 46(7): 0705003.
劳陈哲, 孙建锋, 周煜, 等. 多孔径接收相干合束系统性能研究 [J]. 中国激光. 2019, 46(7): 0705003.

【19】Ke X Z, Deng L J. Wireless optical communication[M]. Beijing: Science Press, 2016.
柯熙政, 邓莉君. 无线光通信[M]. 北京: 科学出版社, 2016.

【20】Zhang H B, Jiang N, Zheng Z, et al. Experimental demonstration of FTN-NRZ, PAM-4, and duobinary based on 10-Gbps optics in 100G-EPON [J]. IEEE Photonics Journal. 2018, 10(5): 7905813.

【21】Li X Y, Zhang P, Tong S F. Bit error rate performance of free space optical communication system based on differential detection with zero decision threshold under Gamma-Gamma atmospheric turbulence [J]. Chinese Journal of Lasers. 2017, 44(11): 1106001.
李晓燕, 张鹏, 佟首峰. Gamma-Gamma大气湍流下零判决门限差分探测自由空间光通信系统误码率性能 [J]. 中国激光. 2017, 44(11): 1106001.

【22】Li X L, Geng T W, Ma S, et al. Performance improvement of coherent free-space optical communication with quadrature phase-shift keying modulation using digital phase estimation [J]. Applied Optics. 2017, 56(16): 4695-4701.

【23】-10-20)[2020-01-16] . http:∥functions.wolfram.com. 2010.

【24】Chen S. Research of super-Nyquist optical transmission systems and digital signal processing techniques [D]. Beijing: Beijing University of Posts and Telecom. 2015.
陈赛. 超奈奎斯特速率光传输系统与数字信号处理技术研究 [D]. 北京: 北京邮电大学. 2015.

【25】Rusek F, Anderson J B. Constrained capacities for faster-than-Nyquist signaling [J]. IEEE Transactions on Information Theory. 2009, 55(2): 764-775.

【26】Wu Z J, Che H, Li S R, et al. Spectral efficiency and parameter optimization analysis for faster-than-Nyquist signaling [J]. Systems Engineering and Electronics. 2016, 38(5): 1153-1158.
吴湛击, 车慧, 李少冉, 等. 超奈奎斯特的频谱效率与参数优化分析 [J]. 系统工程与电子技术. 2016, 38(5): 1153-1158.

【27】Li W D, Yang H W, Yang D C. Approximation formula for the symmetric capacity of M-ary modulation [2020-01-16].http:∥www.docin.com/p-378613739.html.[2020-01-16]. 0.

【28】Khodakarami H, Shieh W. On the energy efficiency of modulation formats for optical communications [J]. IEEE Photonics Technology Letters. 2013, 25(3): 275-278.

引用该论文

Cao Minghua,Wu Xin,Wang Huiqin,Peng Qingbin. Performance of Faster-than-Nyquist Optical Communication System under Gamma-Gamma Atmospheric Turbulence[J]. Chinese Journal of Lasers, 2020, 47(9): 0906003

曹明华,武鑫,王惠琴,彭清斌. Gamma-Gamma大气湍流下超奈奎斯特光通信系统性能[J]. 中国激光, 2020, 47(9): 0906003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF