首页 > 论文 > 中国激光 > 47卷 > 9期(pp:904006--1)

超声换能器表面振动的激光干涉测量

Measurement of Surface Vibrations of Ultrasonic Transducers by Laser Interference Method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于一种新型激光干涉仪,测量分析了换能器表面的振动状态。用多路探测单元激光干涉仪获得换能器二维表面上各点的振动波形,对工作性能差异较大的三个换能器(中心频率分别为2.25、5、10 MHz)进行对比。根据测得的换能器表面振动波形,利用有限元方法对超声检测中的回波信号进行定量计算,并将计算结果与实验结果进行对比。结果表明,激光干涉仪可直观、定量表征超声换能器的表面振动状态,并能清晰区分超声换能器工作性能的差异,测量结果对评判超声换能器性能、预测超声检测回波信号具有很好的应用价值。

Abstract

Based on a new laser interferometer, the vibration state of transducer surface is measured and analyzed. The vibration waveforms of each point on the two-dimensional surface of the transducer are obtained by using a multi-channel detection unit laser interferometer. Three transducers (the center frequencies are 2.25, 5, 10 MHz) with large differences in performance are compared subsequently. According to the measured surface vibration waveform of transducer, the echo signal in ultrasonic testing is quantitatively calculated by finite element method, and the calculated results are compared with the experimental results. The results show that the laser interferometer can directly and quantitatively characterize the surface vibration state of ultrasonic transducer, and can clearly distinguish the working performance difference of ultrasonic transducer. The measurement results have a good application value for evaluating the performance of ultrasonic transducer and predicting the echo signal of ultrasonic testing.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436.1

DOI:10.3788/CJL202047.0904006

所属栏目:测量与计量

基金项目:国家自然科学基金;

收稿日期:2020-03-02

修改稿日期:2020-05-06

网络出版日期:2020-09-01

作者单位    点击查看

孙朝明:中国工程物理研究院机械制造工艺研究所, 四川 绵阳 621900
孙凯华:中国工程物理研究院机械制造工艺研究所, 四川 绵阳 621900
葛继强:中国工程物理研究院机械制造工艺研究所, 四川 绵阳 621900

联系人作者:孙朝明(chm_sun@163.com)

备注:国家自然科学基金;

【1】Lin S Y. Theory and design of ultrasonic transducers[M]. Beijing: Science Press, 2004, 207-237.
林书玉. 超声换能器的原理及设计[M]. 北京: 科学出版社, 2004, 207-237.

【2】Vives A A. Piezoelectric transducers and applications [M]. Berlin, Heidelberg: Springer. 2008, 413-429.

【3】Hauptmann P, Hoppe N, Püttmer A. Application of ultrasonic sensors in the process industry [J]. Measurement Science and Technology. 2002, 13(8): R73-R83.

【4】Nakamura K. Ultrasonic transducers: materials and design for sensors, actuators and medical applications [M]. Cambridge: Woodhead. 2012, 277-313.

【5】You B W, Ni C Y, Shen Z H. Laser ultrasonic real-time monitoring of photothermal modulation crack closure [J]. Chinese Journal of Lasers. 2019, 46(2): 0204009.
尤博文, 倪辰荫, 沈中华. 光热调制裂纹闭合的激光超声实时监测 [J]. 中国激光. 2019, 46(2): 0204009.

【6】Sun K H, Shen Z H, Li Y L, et al. Inspection of material internal defects using double shadow method based on laser ultrasonic reflected shear waves [J]. Chinese Journal of Lasers. 2018, 45(7): 0710001.
孙凯华, 沈中华, 李远林, 等. 材料内部缺陷的激光超声反射横波双阴影检测方法 [J]. 中国激光. 2018, 45(7): 0710001.

【7】Li H Y, Li Q X, Wang Z B, et al. Detection and evaluation of surface defects based on critical frequency method by laser ultrasonic [J]. Acta Optica Sinica. 2018, 38(7): 0712003.
李海洋, 李巧霞, 王召巴, 等. 基于激光超声临界频率的表面缺陷检测与评价 [J]. 光学学报. 2018, 38(7): 0712003.

【8】Dahiya R S, Valle M, Lorenzelli L. SPICE model for lossy piezoelectric polymers [J]. Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2009, 56(2): 387-395.

【9】Aouzale N, Chitnalah A, Jakjoud H. Experimental validation of SPICE modeling diffraction effects in a pulse-echo ultrasonic system [J]. IEEE Transactions on Circuits and Systems II: Express Briefs. 2009, 56(12): 911-915.

【10】Morris S A, Hutchens C G. Implementation of mason''''s model on circuit analysis programs [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 1986, 33(3): 295-298.

【11】Leach W M. Controlled-source analogous circuits and SPICE models for piezoelectric transducers [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1994, 41(1): 60-66.

【12】Mulholland A J, Ramadas N. O''''Leary R L, et al. Enhancing the performance of piezoelectric ultrasound transducers by the use of multiple matching layers [J]. IMA Journal of Applied Mathematics. 2008, 73(6): 936-949.

【13】Hayward G, Jackson M N. Discrete-time modeling of the thickness mode piezoelectric transducer [J]. IEEE Transactions on Sonics and Ultrasonics. 1984, 31(3): 137-150.

【14】Caronti A, Majjad H, Ballandras S, et al. Vibration maps of capacitive micromachined ultrasonic transducers by laser interferometry [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2002, 49(3): 289-292.

【15】Sampathkumar A, Ketterling J A. Optical characterization of surface-displacement fields of high-frequency transducers . [C]∥2014 IEEE International Ultrasonics Symposium, September 3-6, 2014, Chicago, IL, USA. New York: IEEE. 2014, 1968-1970.

【16】Blackshire J L, Sathish S. Scanning laser interferometric evaluation of individual elements and an entire micro-electro-mechanical ultrasonic array transducer . [C]∥2001 IEEE Ultrasonics Symposium. Proceedings. an International Symposium (Cat. No.01CH37263), October 7-10, 2001, Atlanta, GA, USA. New York: IEEE. 2001, 883-886.

【17】Riera-Franco de Sarabia E, Ramos-Fernandez A, et al. 2D ultrasonic field characterization technique of piezoelectric materials . [C]∥Proceedings 1990 IEEE 7th International Symposium on Applications of Ferroelectrics, June 6-8, 1990, Urbana-Champaign, IL, USA. New York: IEEE. 1990, 330-333.

【18】Sapozhnikov O A, Ponomarev A E, Smagin M A. Transient acoustic holography for reconstructing the particle velocity of the surface of an acoustic transducer [J]. Acoustical Physics. 2006, 52(3): 324-330.

【19】Sapozhnikov O A, Morozov A V, Cathignol D. Piezoelectric transducer surface vibration characterization using acoustic holography and laser vibrometry . [C]∥IEEE Ultrasonics Symposium,2004, August 23-27, 2004, Montreal, Quebec, Canada. New York: IEEE. 2004, 161-164.

【20】Sapozhnikov O A. Pishchal''''nikov Y A, Morozov A V. Reconstruction of the normal velocity distribution on the surface of an ultrasonic transducer from the acoustic pressure measured on a reference surface [J]. Acoustical Physics. 2003, 49(3): 354-360.

【21】Gong Y L, Zhang Y Z, Liang H Y, et al. Research of detection of solid surface laser ultrasonic pulses using a laser heterodyne interferometric method [J]. Chinese Journal of Lasers. 1997, 24(9): 819-822.
龚育良, 张永智, 梁海岩, 等. 用外差干涉法探测固体表面激光超声的研究 [J]. 中国激光. 1997, 24(9): 819-822.

【22】He C F, Zhou X G. Analyses of light gathering power for an ultrasound receiver with a confocal Fabry-Perot interferometer [J]. Chinese Journal of Lasers. 1998, 25(6): 500-504.
何存富, 周辛庚. 共焦Fabry-Perot干涉仪超声接收系统聚光本领分析 [J]. 中国激光. 1998, 25(6): 500-504.

【23】Gong Y L, Wang X D, Zhang R. Optical detection of solid surface ultrasonic pulse using confocal Fabry-Perot interferometer [J]. Chinese Journal of Lasers. 1994, 21(8): 639-644.
龚育良, 王晓东, 张蓉. 用共焦法布里-珀罗干涉仪探测固体表面超声脉冲的研究 [J]. 中国激光. 1994, 21(8): 639-644.

【24】Pouet B, Wartelle A, Breugnot S. Multi-detector receiver for laser ultrasonic measurement on the run [J]. Nondestructive Testing and Evaluation. 2011, 26(3/4): 253-266.

【25】Pouet B, Wartelle A, Breugnot S. Recent progress in multi-channel laser-ultrasonic receivers [J]. AIP Conference Proceedings. 2012, 1430(1): 259-266.

引用该论文

Sun Chaoming,Sun Kaihua,Ge Jiqiang. Measurement of Surface Vibrations of Ultrasonic Transducers by Laser Interference Method[J]. Chinese Journal of Lasers, 2020, 47(9): 0904006

孙朝明,孙凯华,葛继强. 超声换能器表面振动的激光干涉测量[J]. 中国激光, 2020, 47(9): 0904006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF