首页 > 论文 > 中国激光 > 47卷 > 9期(pp:904005--1)

RC-IRLSCF方法及服役车轮踏面线激光检测应用

RC-IRLSCF Method and Application of Laser Detection of Tread Line of Service Wheel

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对线激光位移传感器采集的圆弧特征数据对应整圆的角度偏小、特征点存在噪声及离群点等严重影响圆中心定位精度的问题,提出半径约束迭代重加权最小二乘圆拟合(RC-IRLSCF)方法。为了克服既有圆弧特征检测过程中存在的噪声及离群点对检测精度的影响,构建基于半径约束及鲁棒损失函数的圆拟合目标优化模型,采用迭代重加权与Levenberg-Marquardt算法渐进优化求解模型,实现圆弧特征的精确拟合与定位。通过服役车轮踏面检测实验表明:利用线激光检测轮廓圆弧特征,在光散射和局部变形等原因产生邻近离群点的条件下,所提方法可实现圆弧的精确拟合与定位,具有一定的鲁棒性与抗噪性。

Abstract

Herein, a radius-constrained iterative reweighted least squares circle fitting (RC-IRLSCF) method is proposed to address the problems of very small angle of the circle corresponding to arc characteristic data collected by the line laser displacement sensor, noise and outliers in the characteristic points, and others, which seriously affect the positioning accuracy of the circle center. To overcome the influence of noise and outliers on detection accuracy during the detection of existing arc features, a circle-fitting target optimization model based on radius constraints and robust loss function is constructed using iterative reweighting and Levenberg-Marquardt algorithm to further optimize the solution and achieve accurate fitting and positioning of arc features. The detection experiment of the service wheel tread surface shows the use of line laser in detecting contour arc characteristics. Moreover, the proposed method can realize accurate fitting and positioning of the arc under the condition that light scattering and local deformation produce adjacent outliers, with a certain degree of robustness and noise resistance.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN249

DOI:10.3788/CJL202047.0904005

所属栏目:测量与计量

基金项目:国家自然科学基金、大功率交流传动电力机车系统集成国家重点实验室开放课题;

收稿日期:2020-02-24

修改稿日期:2020-05-06

网络出版日期:2020-09-01

作者单位    点击查看

李淼成:中南大学交通运输工程学院, 湖南 长沙 410075
杨岳:中南大学交通运输工程学院, 湖南 长沙 410075
易兵:中南大学交通运输工程学院, 湖南 长沙 410075
刘龙:中南大学交通运输工程学院, 湖南 长沙 410075

联系人作者:李淼成(yangyue@csu.edu.cn); 杨岳(yangyue@csu.edu.cn);

备注:国家自然科学基金、大功率交流传动电力机车系统集成国家重点实验室开放课题;

【1】Li A J, Xin R, Wu S H. Efficient calibration method for line-structured light vision measurement system [J]. Laser & Optoelectronics Progress. 2019, 56(22): 221505.
李爱娟, 辛睿, 武栓虎. 高效线结构光视觉测量系统标定方法 [J]. 激光与光电子学进展. 2019, 56(22): 221505.

【2】Zhan K F, Chen W J, Li W S, et al. Line laser 3D scene reconstruction system and error analysis [J]. Chinese Journal of Lasers. 2018, 45(12): 1204004.
詹坤烽, 陈文建, 李武森, 等. 线激光三维场景重建系统及误差分析 [J]. 中国激光. 2018, 45(12): 1204004.

【3】Xie D Q, Liang Q K, Sun W, et al. The circular fitting algorithm based on MeanShift clustering and its application in welding spot detection [J]. Computer Simulation. 2019, 36(9): 446-451.
谢达奇, 梁桥康, 孙炜, 等. MeanShift聚类圆拟合算法在焊点检测中的应用 [J]. 计算机仿真. 2019, 36(9): 446-451.

【4】Feng D H, Zhang X, Zhang X, et al. RANSAC-based spatial circle fitting algorithm and its application on motion range detection of a manipulator [J]. Optical Technique. 2016, 42(2): 156-160.
封顶浩, 张曦, 张旭, 等. 基于RANSAC的空间圆拟合算法及其在机械手运动检测中的应用 [J]. 光学技术. 2016, 42(2): 156-160.

【5】Fu Q Y, Zhou Z M, Jin D F, et al. Triangular-wave modulation in a laser ranging system [J]. Chinese Journal of Lasers. 2020, 47(3): 0304006.
傅勤毅, 周遵梅, 金鼎沸, 等. 三角波调制在激光测距中的应用研究 [J]. 中国激光. 2020, 47(3): 0304006.

【6】Liu K, Zhou F Q, Zhang G J. Radius constraint least-square circle fitting method and error analysis [J]. Journal of Optoelectronics·laser. 2006, 17(5): 604-607.
刘珂, 周富强, 张广军. 半径约束最小二乘圆拟合方法及其误差分析 [J]. 光电子·激光. 2006, 17(5): 604-607.

【7】Zhu J, Li X F, Tan W B, et al. Measurement of short arc based on center constraint least-square circle fitting [J]. Optics and Precision Engineering. 2009, 17(10): 2486-2492.
朱嘉, 李醒飞, 谭文斌, 等. 基于圆心约束最小二乘圆拟合的短圆弧测量 [J]. 光学精密工程. 2009, 17(10): 2486-2492.

【8】Li G L. Research on radius measurement and center positioning method of small angle arc parts [D]. Dalian: Dalian University of Technology. 2018, 5: 34-49.
李光磊. 小角度圆弧零件的半径测量和圆心定位方法研究 [D]. 大连: 大连理工大学. 2018, 5: 34-49.

【9】Wei W, Sun C K, Zhang X D, et al. Study on non-contact measurement method based on line-structured laser for vehicle wheel alignment parameters [J]. Journal of Optoelectronics·laser. 2004, 15(12): 1479-1482.
魏嵬, 孙长库, 张效栋, 等. 车轮定位参数的线激光非接触方法研究 [J]. 光电子·激光. 2004, 15(12): 1479-1482.

【10】Yang Y, Liu L, Yi B, et al. Anaccurate and fast method to inspect rail wear based on revised global registration [J]. IEEE Access. 2018, 6: 57267-57278.

【11】Chen H, Zhang S J, Gao J, et al. Online three-dimensional measurement technology for steel wheel based on rotating scanning of multiple line-laser sensors [J]. Chinese Journal of Lasers. 2019, 46(7): 0704006.
陈瀚, 张思瑾, 高见, 等. 基于多个线激光传感器旋转扫描的铸钢车轮在线三维测量技术 [J]. 中国激光. 2019, 46(7): 0704006.

【12】Yang Z, Yao X W, Xing Z Y, et al. Detection on wheel tread wear based on laser displacement sensor [J]. Railway Standard Design. 2018, 62(3): 149-154.
杨志, 姚小文, 邢宗义, 等. 基于激光位移传感器的车轮踏面磨耗检测方法研究 [J]. 铁道标准设计. 2018, 62(3): 149-154.

【13】National railway administration of people''''s republic. Wheel profile for locomotive and car TB/T 449—2016[S]. Beijing: China Railway Publishing House, 2016.
国家铁路局. 机车车辆车轮轮缘踏面外形 TB/T 449—2016[S]. 北京: 中国铁道出版社, 2016.

【14】Sun B, Li B. A quantitative error compensation model of the inclinationangle of the laser displacement sensor [J]. Chinese Journal of Scientific Instrument. 2015, 36(5): 996-1004.
孙彬, 李兵. 一种量化的激光位移传感器倾角误差补偿模型 [J]. 仪器仪表学报. 2015, 36(5): 996-1004.

【15】Gu F, Yu X, Wang C Y, et al. Calibration method of optical particle counter applied to measure mass concentration [J]. Infrared and Laser Engineering. 2007, 36(z1): 553-557.
顾芳, 于晓, 王春勇, 等. 测量质量浓度的光学粒子计数器的标定方法 [J]. 红外与激光工程. 2007, 36(z1): 553-557.

【16】Lee M J, Jung Y J. FPGA implementation of levenverg-marquardt algorithm [J]. Journal of the Institute of Electronics and Information Engineers. 2014, 51(11): 73-82.

【17】Liu H Y, Wei Z H, Zhang Z R. Improved kernel regression model for image restoration [J]. Journal of Image and Graphics. 2011, 16(12): 2140-2144.
刘红毅, 韦志辉, 张峥嵘. 改进的核回归图像恢复 [J]. 中国图象图形学报. 2011, 16(12): 2140-2144.

【18】Barron J T. Ageneral, adaptive robust loss function[EB/OL]. -02-09)[2020-02-23] . https:∥arxiv. 2019, org/abs/1701: 03077.

【19】MacTavish K, Barfoot T D. At all costs: a comparison of robust cost functions for camera correspondence outliers . [C]∥2015 12th Conference on Computer and Robot Vision, June 3-5, 2015, Halifax, NS, Canada. New York: IEEE. 2015, 62-69.

【20】Bergstr?m P, Edlund O. Robust registration of point sets using iteratively reweighted least squares [J]. Computational Optimization and Applications. 2014, 58(3): 543-561.

【21】Holland P W, Welsch R E. Robust regression using iteratively reweighted least-squares [J]. Communications in Statistics-Theory and Methods. 1977, 6(9): 813-827.

【22】Wolke R, Schwetlick H. Iteratively reweighted least squares: algorithms, convergence analysis, and numerical comparisons [J]. Siam Journal on Scientific and Statistical Computing. 1988, 9(5): 907-921.

引用该论文

Li Miaocheng,Yang Yue,Yi Bing,Liu Long. RC-IRLSCF Method and Application of Laser Detection of Tread Line of Service Wheel[J]. Chinese Journal of Lasers, 2020, 47(9): 0904005

李淼成,杨岳,易兵,刘龙. RC-IRLSCF方法及服役车轮踏面线激光检测应用[J]. 中国激光, 2020, 47(9): 0904005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF