首页 > 论文 > 激光与光电子学进展 > 57卷 > 10期(pp:100002--1)

多波长数字全息计量技术综述

Review of Multi-Wavelength Digital Holography Metrology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

数字全息测量具有准确度高、非接触和全场测量等优点。单波长数字全息测量主要适用于高度变化在微米级的连续性形貌物体,而基于双波长干涉技术的多波长数字全息技术可测量形貌更复杂、高度方向变化更陡峭的物体,大大扩展了数字全息计量技术的应用范围。近年来,多波长数字全息的研究发展有两个主要方向:一是与实际需求相适应的新的测量方式和/或光路;二是图像处理方面包括降噪、数值重建和相位畸变修正等的新技术新方法,使计算效率和测量准确度得到明显改善。

Abstract

Holding advantages including high accuracy, non-contact measurement, and full-filed measurement, single-wavelength digital holographic systems are generally used for the measurement of micro-scale objects with continuous morphology. Developed from dual-wavelength interferometry techniques, multi-wavelength digital holographic systems can measure objects with complex shapes and larger scales, which extends the application range of digital holographic metrology. In recent years, there are two main research topics in multi-wavelength digital holography area. First, many types of measurement methods and/or optical setup according to realistic requirements are proposed; in addition, enhancement are achieved in image processing techniques such as noise reduction algorithm, numerical reconstruction and phase aberration compensation to improve the computational efficiency and result accuracy.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O438.1

DOI:10.3788/LOP57.100002

所属栏目:综述

基金项目:国家重点研发计划项目;

收稿日期:2019-09-17

修改稿日期:2019-10-12

网络出版日期:2020-05-01

作者单位    点击查看

张悦萌:上海交通大学电子信息与电气工程学院, 上海 200240
蔡萍:上海交通大学电子信息与电气工程学院, 上海 200240
隆军:上海交通大学电子信息与电气工程学院, 上海 200240
闫浩:上海交通大学电子信息与电气工程学院, 上海 200240

联系人作者:蔡萍(pcai@sjtu.edu.cn)

备注:国家重点研发计划项目;

【1】Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging [J]. Optics Letters. 1999, 24(5): 291-293.

【2】Marquet P, Rappaz B, Magistretti P J, et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy [J]. Optics Letters. 2005, 30(5): 468-470.

【3】Guo R L, Zhang W G, Liu R, et al. Phase unwrapping in dual-wavelength digital holographic microscopy with total variation regularization [J]. Optics Letters. 2018, 43(14): 3449-3452.

【4】Forrester A T, Parkins W E, Gerjuoy E. On the possibility of observing beat frequencies between lines in the visible spectrum [J]. Physical Review. 1947, 72(8): 728.

【5】Gass J, Dakoff A, Kim M K. Phase imaging without 2π ambiguity by multiwavelength digital holography [J]. Optics Letters. 2003, 28(13): 1141-1143.

【6】Mann C J, Bingham P R, Paquit V C, et al. Quantitative phase imaging by three-wavelength digital holography [J]. Optics Express. 2008, 16(13): 9753-9764.

【7】Wada A, Kato M, Ishii Y. Large step-height measurements using multiple-wavelength holographic interferometry with tunable laser diodes [J]. Journal of the Optical Society of America A. 2008, 25(12): 3013-3020.

【8】Khmaladze A, Matz R L, Zhang C, et al. Dual-wavelength linear regression phase unwrapping in three-dimensional microscopic images of cancer cells [J]. Optics Letters. 2011, 36(6): 912-914.

【9】Li Y, Xiao W, Pan F. Multiple-wavelength-scanning-based phase unwrapping method for digital holographic microscopy [J]. Applied Optics. 2014, 53(5): 979-987.

【10】Zhang T, Unger K, Maire G, et al. Multi-wavelength multi-angle reflection tomography [J]. Optics Express. 2018, 26(20): 26093-26105.

【11】Hosseini P, Jin D, Yaqoob Z, et al. Single-shot dual-wavelength interferometric microscopy [J]. Methods. 2018, 136: 35-39.

【12】Pan F, Yang L Z, Xiao W. Coherent noise reduction in digital holographic microscopy by averaging multiple holograms recorded with a multimode laser [J]. Optics Express. 2017, 25(18): 21815-21825.

【13】Nomura T, Okamura M, Nitanai E, et al. Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths [J]. Applied Optics. 2008, 47(19): 38-43.

【14】Di J L, Qu W J, Wu B J, et al. Dual wavelength digital holography for improving the measurement accuracy [C]. International Conference on Optics in Precision Engineering & Nanotechnology. 2013.

【15】Carl D, Fratz M, Pfeifer M, et al. Multiwavelength digital holography with autocalibration of phase shifts and artificial wavelengths [J]. Applied Optics. 2009, 48(34): H1-H8.

【16】Fratz M, Carl D. Novel industry ready sensors for shape measurement based on multi wavelength digital holography [M]. ∥Fringe 2013. Berlin, Heidelberg: Springer Berlin Heidelberg. 2014, 479-484.

【17】Schiller A, Beckmann T, Fratz M, et al. Digital holography on moving objects: multiwavelength height measurements on inclined surfaces [C]. Society of Photo-optical Instrumentation Engineers. 2017.

【18】Seyler T, Fratz M, Beckmann T, et al. Extending the depth of field beyond geometrical imaging limitations using phase noise as a focus measure in multiwavelength digital holography [J]. Applied Sciences. 2018, 8(7): 1042.

【19】Schnars U, Jüptner W. Direct recording of holograms by a CCD target and numerical reconstruction [J]. Applied Optics. 1994, 33(2): 179-181.

【20】Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry [J]. Journal of the Optical Society of America. 1982, 72(1): 156-160.

【21】Cuche E, Marquet P, Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography [J]. Applied Optics. 2000, 39(23): 4070-4075.

【22】Wada A, Kato M, Ishii Y. Multiple-wavelength digital holographic interferometry using tunable laser diodes [J]. Applied Optics. 2008, 47(12): 2053-2060.

【23】Colomb T, Krivec S, Hutter H, et al. Digital holographic reflectometry [J]. Optics Express. 2010, 18(4): 3719-3731.

【24】Di J L, Zhang J W, Xi T L, et al. Improvement of measurement accuracy in digital holographic microscopy by using dual-wavelength technique [J]. Nanolithography, MEMS, and MOEMS. 2015, 14(4): 041313.

【25】Kühn J, Colomb T, Montfort F, et al. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition [J]. Optics Express. 2007, 15(12): 7231-7242.

【26】Tahara T, Gotohda T, Akamatsu T, et al. High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography [J]. Optics Letters. 2018, 43(12): 2937-2940.

【27】Turko N A, Eravuchira P J, Barnea I, et al. Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module [J]. Optics Letters. 2018, 43(9): 1943-1946.

【28】Tahara T, Kaku T, Arai Y. Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA) [J]. Optics Express. 2014, 22(24): 29594-29610.

【29】Abdelsalam D G, Magnusson R, Kim D. Single-shot, dual-wavelength digital holography based on polarizing separation [J]. Applied Optics. 2011, 50(19): 3360-3368.

【30】Kou Y L, Li E P, Di J L, et al. Surface morphology measurement of tiny object based on dual-wavelength digital holography [J]. Chinese Journal of Lasers. 2014, 41(2): 0209010.
寇云莉, 李恩普, 邸江磊, 等. 利用双波长数字全息术测量微小物体表面形貌 [J]. 中国激光. 2014, 41(2): 0209010.

【31】Guo R L, Wang F. Compact and stable real-time dual-wavelength digital holographic microscopy with a long-working distance objective [J]. Optics Express. 2017, 25(20): 24512-24520.

【32】Liu L, Shan M G, Zhong Z, et al. Simultaneous dual-wavelength off-axis flipping digital holography [J]. Optics Letters. 2017, 42(21): 4331-4334.

【33】Tayebi B, Han J H, Sharif F, et al. Compact single-shot four-wavelength quantitative phase microscopy with polarization- and frequency-division demultiplexing [J]. Optics Express. 2017, 25(17): 20172-20182.

【34】Liu G, Scott P D. Phase retrieval and twin-image elimination for in-line Fresnel holograms [J]. Journal of the Optical Society of America A. 1987, 4(1): 159-165.

【35】Yamaguchi I, Zhang T. Phase-shifting digital holography [J]. Optics Letters. 1997, 22(16): 1268-1270.

【36】Meng X F, Cai L Z, Xu X F, et al. Two-step phase-shifting interferometry and its application in image encryption [J]. Optics Letters. 2006, 31(10): 1414-1416.

【37】Shaked N T, Zhu Y Z, Rinehart M T, et al. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells [J]. Optics Express. 2009, 17(18): 15585-15591.

【38】Awatsuji Y, Sasada M, Kubota T. Parallel quasi-phase-shifting digital holography [J]. Applied Physics Letters. 2004, 85(6): 1069-1071.

【39】Cai L Z, Liu Q, Yang X L. Generalized phase-shifting interferometry with arbitrary unknown phase steps for diffraction objects [J]. Optics Letters. 2004, 29(2): 183-185.

【40】Abdelsalam D G, Kim D. Two-wavelength in-line phase-shifting interferometry based on polarizing separation for accurate surface profiling [J]. Applied Optics. 2011, 50(33): 6153-6161.

【41】Barada D, Kiire T, Sugisaka J I, et al. Simultaneous two-wavelength Doppler phase-shifting digital holography [J]. Applied Optics. 2011, 50(34): H237-H244.

【42】Xiong J X, Zhong L Y, Liu S D, et al. Improved phase retrieval method of dual-wavelength interferometry based on a shorter synthetic-wavelength [J]. Optics Express. 2017, 25(7): 7181-7191.

【43】Zhang W P, Lu X X, Fei L H, et al. Simultaneous phase-shifting dual-wavelength interferometry based on two-step demodulation algorithm [J]. Optics Letters. 2014, 39(18): 5375-5378.

【44】Fei L H, Lu X X, Wang H L, et al. Single-wavelength phase retrieval method from simultaneous multi-wavelength in-line phase-shifting interferograms [J]. Optics Express. 2014, 22(25): 30910-30923.

【45】Zhang W P, Lu X X, Luo C S, et al. Principal component analysis based simultaneous dual-wavelength phase-shifting interferometry [J]. Optics Communications. 2015, 341: 276-283.

【46】Qiu X, Zhong L Y, Xiong J X, et al. Phase retrieval based on temporal and spatial hybrid matching in simultaneous phase-shifting dual-wavelength interferometry [J]. Optics Express. 2016, 24(12): 12776-12787.

【47】Li J S, Lu X X, Xu X F, et al. Simultaneous phase-shifting dual-wavelength interferometry based on independent component analysis [J]. Applied Optics. 2017, 56(13): 3673-3678.

【48】Servin M, Padilla M, Garnica G. Synthesis of multi-wavelength temporal phase-shifting algorithms optimized for high signal-to-noise ratio and high detuning robustness using the frequency transfer function [J]. Optics Express. 2016, 24(9): 9766-9780.

【49】Lee Y, Ito Y, Tahara T, et al. Single-shot dual-wavelength phase unwrapping in parallel phase-shifting digital holography [J]. Optics Letters. 2014, 39(8): 2374-2377.

【50】Safrani A, Abdulhalim I. High-speed 3D imaging using two-wavelength parallel-phase-shift interferometry [J]. Optics Letters. 2015, 40(20): 4651-4654.

【51】Ney M, Safrani A, Abdulhalim I. Three wavelengths parallel phase-shift interferometry for real-time focus tracking and vibration measurement [J]. Optics Letters. 2017, 42(4): 719-722.

【52】Kumar U P, Mohan N K, Kothiyal M P. Red-green-blue wavelength interferometry and TV holography for surface metrology [J]. Journal of Optics. 2011, 40(4): 176-183.

【53】Desse J M, Picart P, Tankam P. Sensor influence in digital 3λ holographic interferometry [J]. Measurement Science and Technology. 2011, 22(6): 064005.

【54】Pf?rtner A, Schwider J. Red-green-blue interferometer for the metrology of discontinuous structures [J]. Applied Optics. 2003, 42(4): 667-673.

【55】Zhao H, Zeng F C, Zhong L Y, et al. Quantitative measurement of cell phase using dual-wavelength digital holographic microscopy with color CMOS [J]. Laser & Optoelectronics Progress. 2015, 52(7): 070901.
赵晖, 曾凡创, 钟丽云, 等. 基于彩色CMOS双波长数字全息显微术的细胞相位定量测量 [J]. 激光与光电子学进展. 2015, 52(7): 070901.

【56】Tian X B, Tu X Z, Zhang J C, et al. Snapshot multi-wavelength interference microscope [J]. Optics Express. 2018, 26(14): 18279-18291.

【57】Rinehart M T, Shaked N T, Jenness N J, et al. Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera [J]. Optics Letters. 2010, 35(15): 2612-2614.

【58】Min J W, Yao B L, Gao P, et al. Dual-wavelength slightly off-axis digital holographic microscopy [J]. Applied Optics. 2012, 51(2): 191-196.

【59】Lue N, Kang J W, Hillman T R, et al. Single-shot quantitative dispersion phase microscopy [J]. Applied Physics Letters. 2012, 101(8): 084101.

【60】Dubois F, Joannes L, Legros J C. Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence [J]. Applied Optics. 1999, 38(34): 7085-7094.

【61】Pedrini G, Schedin S. Short coherence digital holography for 3D microscopy [J]. Optik - International Journal for Light and Electron Optics. 2001, 112(9): 427-432.

【62】Warnasooriya N, Kim M K. LED-based multi-wavelength phase imaging interference microscopy [J]. Optics Express. 2007, 15(15): 9239-9247.

【63】Kemper B, Stürwald S, Remmersmann C, et al. Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces [J]. Optics and Lasers in Engineering. 2008, 46(7): 499-507.

【64】Jeon S, Cho J, Jin J N, et al. Dual-wavelength digital holography with a single low-coherence light source [J]. Optics Express. 2016, 24(16): 18408-18416.

【65】Cho J, Lim J, Jeon S, et al. Dual-wavelength off-axis digital holography using a single light-emitting diode [J]. Optics Express. 2018, 26(2): 2123-2131.

【66】Deng L J, Huang X Y, Zeng L M, et al. Dual-wavelength image-plane digital holographic microscopy based on bi-color LED chips [J]. Acta Optica Sinica. 2018, 38(1): 0111004.
邓丽军, 黄星艳, 曾吕明, 等. 基于双色LED芯片的双波长像面数字全息显微术 [J]. 光学学报. 2018, 38(1): 0111004.

【67】Yu L F, Cai L L. Iterative algorithm with a constraint condition for numerical reconstruction of a three-dimensional object from its hologram [J]. Journal of the Optical Society of America A. 2001, 18(5): 1033-1045.

【68】Xu L, Mater M, Ni J. Focus detection criterion for refocusing in multi-wavelength digital holography [J]. Optics Express. 2011, 19(16): 14779-14793.

【69】Dohet-Eraly J, Yourassowsky C, Dubois F. Fast numerical autofocus of multispectral complex fields in digital holographic microscopy with a criterion based on the phase in the Fourier domain [J]. Optics Letters. 2016, 41(17): 4071-4074.

【70】Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms [J]. Applied Optics. 1999, 38(34): 6994-7001.

【71】Colomb T, Kühn J, Charrière F, et al. Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram [J]. Optics Express. 2006, 14(10): 4300-4306.

【72】Colomb T, Cuche E, Charrière F, et al. Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation [J]. Applied Optics. 2006, 45(5): 851-863.

【73】Colomb T, Montfort F, Kühn J, et al. Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy [J]. Journal of the Optical Society of America A. 2006, 23(12): 3177-3190.

【74】Ferraro P, de Nicola S, Finizio A, et al. Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging [J]. Applied Optics. 2003, 42(11): 1938-1946.

【75】St?pień P, Korbuszewski D, Kujawińska M. Digital holographic microscopy with extended field of view using tool for generic image stitching [J]. ETRI Journal. 2019, 41(1): 73-83.

【76】Nguyen T, Bui V, Lam V, et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection [J]. Optics Express. 2017, 25(13): 15043-15057.

【77】Upputuri P K. Measurement of discontinuous surfaces using multiple-wavelengthinterferometry [J]. Optical Engineering. 2009, 48(7): 073603.

【78】Nguyen T, Nehmetallah G, Raub C, et al. Accurate quantitative phase digital holographic microscopy with single- and multiple-wavelength telecentric and nontelecentric configurations [J]. Applied Optics. 2016, 55(21): 5666-5683.

【79】Khodadad D, Bergstr?m P, H?llstig E, et al. Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements [J]. Applied Optics. 2015, 54(16): 5003-5010.

【80】Ferraro P, Grilli S, Miccio L, et al. Full color 3-D imaging by digital holography and removal of chromatic aberrations [J]. Journal of Display Technology. 2008, 4(1): 97-100.

【81】Alfieri D. Coppola G,de Nicola S, et al. Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength [J]. Optics Communications. 2006, 260(1): 113-116.

【82】Colomb T, Kühn J, Depeursinge C, et al. Several micron-range measurements with sub-nanometric resolution by the use of dual-wavelength digital holography and vertical scanning [J]. Proceedings of SPIE. 2009, 7389: 73891H.

【83】Nadeborn W, Andr? P, Osten W. A robust procedure for absolute phase measurement [J]. Optics and Lasers in Engineering. 1996, 24(2/3): 245-260.

【84】Parshall D, Kim M K. Digital holographic microscopy with dual-wavelength phase unwrapping [J]. Applied Optics. 2006, 45(3): 451-459.

【85】Shan M G, Liu L, Zhong Z, et al. Improved phase reconstruction using linear programming for dual-wavelength digital holography [J]. Optics and Lasers in Engineering. 2019, 117: 1-6.

【86】Rivenson Y, Zhang Y B, Günayd?n H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks [J]. Light: Science & Applications. 2018, 7(2): 17141.

【87】Ren Z B, Xu Z M, Lam E Y. Learning-based nonparametric autofocusing for digital holography [J]. Optica. 2018, 5(4): 337-344.

【88】Wang H, Lyu M. Situ G H. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction [J]. Optics Express. 2018, 26(18): 22603-22614.

【89】Sawaf F, Groves R M. Phase discontinuity predictions using a machine-learning trained kernel [J]. Applied Optics. 2014, 53(24): 5439-5447.

【90】Spoorthi G E, Gorthi S. Gorthi R K S S. PhaseNet: a deep convolutional neural network for two-dimensional phase unwrapping [J]. IEEE Signal Processing Letters. 2019, 26(1): 54-58.

【91】Zhang J C, Tian X B, Shao J B, et al. Phase unwrapping in optical metrology via denoised and convolutional segmentation networks [J]. Optics Express. 2019, 27(10): 14903-14912.

【92】Wang K Q, Li Y, Qian K M, et al. One-step robust deep learning phase unwrapping [J]. Optics Express. 2019, 27(10): 15100-15115.

引用该论文

Zhang Yuemeng,Cai Ping,Long Jun,Yan Hao. Review of Multi-Wavelength Digital Holography Metrology[J]. Laser & Optoelectronics Progress, 2020, 57(10): 100002

张悦萌,蔡萍,隆军,闫浩. 多波长数字全息计量技术综述[J]. 激光与光电子学进展, 2020, 57(10): 100002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF