首页 > 论文 > High Power Laser Science and Engineering > 8卷 > 2期(pp:27--1)

Efficient idler broadening via oppositely dual-chirped difference frequency generation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Dual-chirped difference frequency generation (DFG) is an advantageous technique for generating the broadband mid-infrared (IR) idler wave, which is inaccessible by a population-inversion-based laser system. In principle, the generated idler wave may even suffer a spectrum broadening compared with the driving pulsed lasers if the pump and signal waves are oppositely chirped. However, broadband phase-matching is always the determining factor for the resulting efficiency and the bandwidth of the generated idler wave. In this study, specific to an oppositely dual-chirped DFG scheme, we derive the precondition to realize broadband frequency conversion, wherein a negative $(1/\unicode[STIX]{x1D710}_{p}-1/\unicode[STIX]{x1D710}_{i})/(1/\unicode[STIX]{x1D710}_{s}-1/\unicode[STIX]{x1D710}_{i})$, in terms of the correlation coefficient of the group velocity ($\unicode[STIX]{x1D70E}$), is necessary. However, most birefringence bulk crystals can only provide the required material dispersions in limited spectral regions. We show that the periodically poled lithium niobate crystal that satisfies an inactive Type-II (eo-o) quasi-phase-matching condition has a stable negative $\unicode[STIX]{x1D70E}$ and exerts the expected broadband gain characteristic across an ultra-broad idler spectral region $(1.7{-}4.0~\unicode[STIX]{x03BC}\text{m})$. Finally, we propose and numerically verify a promising DFG configuration to construct a tunable mid-IR spectrum broader based on the broadband phase-matched oppositely dual-chirped DFG scheme.

中国激光微信矩阵
补充资料

DOI:10.1017/hpl.2020.24

所属栏目:Research Articles

基金项目:This work was supported in part by the National Natural Science Foundation of China (No. 61505113), Natural Science Foundation of Guangdong Province (No. 2020A1515010541) and Science and Technology Project of Shenzhen (Nos. JCYJ20180305124930169, JCYJ20190808143419622 and ZDSYS201707271014468).

收稿日期:2020-03-02

录用日期:2020-05-18

网络出版日期:2020-06-29

作者单位    点击查看

Haizhe Zhong:International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, Shenzhen University, Shenzhen518060, China
Bin Hu:International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, Shenzhen University, Shenzhen518060, China
Saisai Hu:International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, Shenzhen University, Shenzhen518060, China
Shengying Dai:International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, Shenzhen University, Shenzhen518060, China
Ying Li:International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, Shenzhen University, Shenzhen518060, China
Dianyuan Fan:International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, Shenzhen University, Shenzhen518060, China

联系人作者:Ying Li(queenly@vip.sina.com)

备注:This work was supported in part by the National Natural Science Foundation of China (No. 61505113), Natural Science Foundation of Guangdong Province (No. 2020A1515010541) and Science and Technology Project of Shenzhen (Nos. JCYJ20180305124930169, JCYJ20190808143419622 and ZDSYS201707271014468).

【1】T. Popmintchev, M. C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, A. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane and H. C. Kapteyn. Science. 336, (2012).

【2】S. Ghimire and D. A. Reis. Nat. Phys. 15, (2019).

【3】H. T. Kim, K. H. Pae, H. J. Cha, I. J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong and J. Lee. Phys. Rev. Lett. 111, (2013).

【4】D. Woodbury, L. Feder, V. Shumakova, C. Gollner, R. Schwartz, B. Miao, F. Salehi, A. Korolov, A. Pug?lys, A. Baltu?ka and H. M. Milchberg. Opt. Lett. 43, (2018).

【5】F. Keilmann, C. Gohle and R. Holzwarth. Opt. Lett. 29, (2004).

【6】S. Cha, J. H. Sung, S. Sim, J. Park, H. Heo, M. Jo and H. Choi. Nat. Commun. 7, (2016).

【7】K. Zhao, H. Zhong, P. Yuan, G. Xie, J. Wang, J. Ma and L. Qian. Opt. Lett. 38, (2013).

【8】C. Xi, P. Wang, X. Li and Z. Liu. High Power Laser Sci. Eng. 7, (2019).

【9】N. Ishii, P. Xia, T. Kanai and J. Itatani. Opt. Express. 27, (2019).

【10】G. Cerullo and S. D. Silvestri. Rev. Sci. Instrum. 74, (2003).

【11】G. Andriukaitis, T. Bal?iūnas, S. Ali?auskas, A. Pug?lys, A. Baltu?ka, T. Popmintchev, M. Chen, M. M. Murnane and H. C. Kapteyn. Opt. Lett. 36, (2011).

【12】I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski and J. Biegert. Nat. Photonics. 9, (2015).

【13】Q. Zhang, E. J. Takahashi, O. D. Mücke, P. Lu and K. Midorikawa. Opt. Express. 19, (2011).

【14】Y. Fua, B. Xue, K. Midorikawa and E. J. Takahashi. Appl. Phys. Lett. 112, (2018).

【15】Y. Fu, E. J. Takahashi, Q. Zhang, P. Lu and K. Midorikawa. J. Opt. 17, (2015).

【16】F. Raoult, A. C. L. Boscheron, D. Husson, C. Rouyer, C. Sauteret and A. Migus. Opt. Lett. 24, (1999).

【17】O. Gobert, G. Mennerat, R. Maksimenka, N. Fedorov, M. Perdrix, D. Guillaumet, C. Ramond, J. Habib, C. Prigent, D. Vernhet, T. Oksenhendler and M. Comte. Appl. Opt. 53, (2014).

【18】H. Luo, L. Qian, P. Yuan and H. Zhu. Opt. Express. 14, (2006).

【19】Y. Li, Y. Liang, D. Dai, J. Yang, H. Zhong and D. Fan. Photon. Res. 5, (2017).

【20】B. W. Mayer, C. R. Phillips, L. Gallmann and U. Keller. Opt. Express. 22, (2014).

【21】M. Mero and V. Petrov. IEEE Photonics J. 9, (2017).

【22】S. Witte and K. S. E. Eikema. IEEE J. Sel. Top. Quantum Electron. 18, (2011).

【23】O. Gayer, Z. Sacks, E. Galun and A. Arie. Appl. Phys. B. 91, (2008).

【24】P. Segonds, B. Boulanger, J. Fève, B. Ménaert, J. Zaccaro, G. Aka and D. Pelenc. J. Opt. Soc. Am. B. 21, (2004).

【25】K. KatoK. Kato. IEEE J. Quantum Electron. 30, (1994).

【26】H. Vanherzeele, J. D. Bierlein and F. C. Zumsteg. Appl. Opt. 27, (1988).

【27】J. Ma, J. Wang, P. Yuan, G. Xie, K. Xiong, Y. Tu, X. Tu, E. Shi, Y. Zheng and L. Qian. Optica. 2, (2015).

【28】M. Leidinger, S. Fieberg, N. Waasem, F. Kühnemann, K. Buse and I. Breunig. Opt. Express. 23, (2015).

【29】Y. Fu, E. J. Takahashi and K. Midorikawa. Opt. Lett. 40, (2015).

【30】Y. Yin, J. Li, X. Ren, Y. Wang, A. Chew and Z. Chang. Opt. Express. 24, (2016).

【31】N. Bigler, J. Pupeikis, S. Hrisafov, L. Gallmann, C. R. Phillips and U. Keller. Opt. Express. 26, (2018).

【32】M. Y. Hu, X. Y. Liang, B. Z. Zhao, R. X. Li and Z. Z. Xu. Jpn. J. Appl. Phys. 46, (2007).

【33】C. Neese, C. R. Phillips, L. Gallmann, M. M. Fejer and U. Keller. Opt. Lett. 35, (2010).

【34】N. E. Yu, J. H. Ro, M. Cha, S. Kurimura and T. Taira. Opt. Lett. 27, (2002).

【35】H. Zhong, L. Zhang, Y. Li and D. Fan. Sci. Rep. 5, (2015).

【36】Y. Li, H. Z. Zhong, J. L. Yang, S. W. Wang and D. Y. Fan. Opt. Lett. 42, (2017).

【37】V. Petrov and F. Noack. J. Opt. Soc. Am. B. 12, (1995).

【38】K. Osvay and I. N. Ross. J. Opt. Soc. Am. B. 13, (1996).

【39】S. Sukeert, S. C. Kumar and M. Ebrahim-Zadeh. Opt. Lett. 44, (2019).

【40】M. K. Reed, M. K. Steiner-Shepard and D. K. Negus. Opt. Lett. 19, (1994).

【41】A. Shirakawa and T. Kobayashi. Appl. Phys. Lett. 72, (1998).

引用该论文

Haizhe Zhong, Bin Hu, Saisai Hu, Shengying Dai, Ying Li, and Dianyuan Fan, "Efficient idler broadening via oppositely dual-chirped difference frequency generation," High Power Laser Science and Engineering 8(2), e27 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF