首页 > 论文 > 中国激光 > 46卷 > 9期(pp:901006--1)

空间冷原子钟原位探测微波腔设计

Design of Microwave Cavity for in Situ Atom Detection Used in Space Cold Atom Clock

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

高精度空间冷原子钟在基础物理研究、导航定位系统,以及深空探测领域均有重要应用。为此,设计了一种结合激光冷却与原子原位探测方案的新型微波腔,在该微波腔中心可以俘获与冷却铷原子,然后在微重力环境下对冷原子样品开展原子钟操作。该方案相对于已有的空间冷原子钟方案,在减少冷原子损耗、死时间占比和分布腔相移上具有较大的优势。分析了微波腔的详细结构与光学设计,确定了微波腔需要的基本参数,并对微波腔内部的微波磁场进行了仿真分析。在已完成研制的微波腔内开展特性测试,测试与仿真结果说明,所设计微波腔的性能可以满足不确定度优于1×10 -16的高精度空间冷原子钟的要求。

Abstract

High-precision space cold atom clocks play an important role in basic physics researches, navigation and positioning systems, and deep space exploration in the future. Herein, a novel microwave cavity is presented, which combines laser cooling and in situ atom detection. In microgravity, 87Rb atoms can be captured and cooled at the center of the microwave cavity, and the cold atom sample can be interrogated by the microwave field of the cavity. The analysis shows that this scheme has considerable advantages over the existing space cold atom clock schemes in reducing the loss of cold atoms, the proportion of dead time, and the range of distributed phase shift in the cavity. The detailed structure and optical design of the microwave cavity are presented herein, and the microwave magnetic field inside the microwave cavity is simulated. The characteristic test is performed in the cavity, and it shows that the design of the microwave cavity meets the requirement of the uncertainty of the space cold atom clock being better than 1×10 -16.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0901006

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金、中国科技部仪器项目;

收稿日期:2019-03-15

修改稿日期:2019-05-14

网络出版日期:2019-09-01

作者单位    点击查看

王新文:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800中国科学院大学材料科学与光电技术学院, 北京 100049
高源慈:电子科技大学电子科学与工程学院, 四川 成都 611731
赵剑波:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
彭向凯:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800中国科学院大学材料科学与光电技术学院, 北京 100049
任伟:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
项静峰:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
张镇:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
董功勋:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
刘亢亢:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
屈求智:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
刘亮:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800中国科学院大学材料科学与光电技术学院, 北京 100049
吕德胜:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800中国科学院大学材料科学与光电技术学院, 北京 100049

联系人作者:刘亮(liang.liu@siom.ac.cm); 吕德胜( dslv@siom.ac.cn);

备注:国家自然科学基金、中国科技部仪器项目;

【1】Kasevich M A, Riis E, Chu S et al. RF spectroscopy in an atomic fountain. Physical Review Letters. 63(6), 612-615(1989).

【2】Clairon A, Salomon C, Guellati S et al. Ramsey resonance in a zacharias fountain. Europhysics Letters (EPL). 16(2), 165-170(1991).

【3】Guena J, Abgrall M, Rovera D et al. Progress in atomic fountains at LNE-SYRTE. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 59(3), 391-409(2012).

【4】Gerginov V, Nemitz N, Weyers S et al. Uncertainty evaluation of the caesium fountain clock PTB-CSF2. Metrologia. 47(1), 65-79(2010).

【5】Ovchinnikov Y and Marra G. Accurate rubidium atomic fountain frequency standard. Metrologia. 48(3), 87-100(2011).

【6】Levi F, Calonico D, Calosso C E et al. Accuracy evaluation of ITCsF2: a nitrogen cooled caesium fountain. Metrologia. 51(3), 270-284(2014).

【7】Laurent P, Lemonde P, Simon E et al. A cold atom clock in absence of gravity. The European Physical Journal D. 3(3), 201-204(1998).

【8】Laurent P, Massonnet D, Cacciapuoti L et al. The ACES/PHARAO space mission. Comptes Rendus Physique. 16(5), 540-552(2015).

【9】Liu L, Lü D S, Chen W B et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms . Nature Communications. 9, (2018).

【10】Laurent P, Abgrall M, Jentsch C et al. Design of the cold atom PHARAO space clock and initial test results. Applied Physics B. 84(4), 683-690(2006).

【11】Ren W, Gao Y C, Li T et al. Microwave interrogation cavity for the rubidium space cold atom clock. Chinese Physics B. 25(6), (2016).

【12】Silvermetz D, Bloch M and Meirs M. Local oscillator induced instabilities in trapped ion frequency standards. [C]∥Nineteenth Annual Precise Time and Material Interval (PTTI) Applications and Planning Meeting. December 1-3, 1987, California. [S.l.: s.n.]. 113-132(1987).

【13】Dick G, Prestage J, Greenhall C et al. Local oscillator induced degradation of medium-term stability in passive atomic frequency standards. [C]∥22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting. Pasadena, CA: Jet Propulsion Laboratory, California Institute of Technology. 487-508(1990).

【14】Santarelli G, Audoin C, Makdissi A et al. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 45(4), 887-894(1998).

【15】Cheng H D, Zhang W Z, Ma H Y et al. Laser cooling of rubidium atoms from background vapor in diffuse light. Physical Review A. 79(2), (2009).

【16】Xiao L, Wang X C, Zhang W Z et al. Loading of cold 87Rb atom with diffuse light in an integrating sphere . Chinese Optics Letters. 8(3), 253-255(2010).

【17】Liu P, Meng Y L, Wan J Y et al. Scheme for a compact cold-atom clock based on diffuse laser cooling in a cylindrical cavity. Physical Review A. 92(6), (2015).

【18】Müller S T, Magalh?es D V, Alves R F et al. Compact frequency standard based on an intracavity sample of cold cesium atoms. Journal of the Optical Society of America B. 28(11), 2592-2596(2011).

【19】Li R X and Gibble K. Evaluating and minimizing distributed cavity phase errors in atomic clocks. Metrologia. 47(5), 534-551(2010).

【20】Vanier J and Audoin C. The quantum physics of atomic frequency standards. Bristol, Philadelphia: Adam Hilger. 617-645(1989).

【21】Bian F G, Wei R, Lü D S et al. Design for microwave cavity in a laser-cooled Rb fountain clock. Chinese Journal of Lasers. 33(9), 1185-1189(2006).
边风刚, 魏荣, 吕德胜 等. 激光冷却铷原子喷泉钟的微波谐振腔设计. 中国激光. 33(9), 1185-1189(2006).

【22】Peng X K. Research on key technologies of space cold atom clock. Shanghai: University of Chinese Academy of Sciences. (2019).
彭向凯. 空间冷原子钟关键技术研究[D] 上海: 中国科学院大学. (2019).

引用该论文

Xinwen Wang,Yuanci Gao,Jianbo Zhao,Xiangkai Peng,Wei Ren,Jingfeng Xiang,Zhen Zhang,Gongxun Dong,Kangkang Liu,Qiuzhi Qu,Liang Liu,Desheng Lü. Design of Microwave Cavity for in Situ Atom Detection Used in Space Cold Atom Clock[J]. Chinese Journal of Lasers, 2019, 46(9): 0901006

王新文,高源慈,赵剑波,彭向凯,任伟,项静峰,张镇,董功勋,刘亢亢,屈求智,刘亮,吕德胜. 空间冷原子钟原位探测微波腔设计[J]. 中国激光, 2019, 46(9): 0901006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF